Generalized numerical semigroups up to permutations of coordinates and some related procedures

Carmelo Cisto

University of Messina

July 9, 2024

International Meeting on Numerical Semigroups 2024 University of Cadiz

Joint work with:

Gioia Failla

Mediterranean University of Reggio Calabria.

and

Francesco Navarra

Sabanci University of Istanbul.

C, G. Failla, F. Navarra, Generalized numerical semigroups up to permutations of coordinates, preprint, 2024.

Generalized Numerical Semigroups

Let \mathbb{N} be the set of non-negative integers.

- G. Failla, C. Peterson, R. Utano: Algorithms and basic asymptotics for generalized numerical semigroups in ℕ^d, Semigroup Forum **92**(2), 460–473 (2016).
- $S \subseteq \mathbb{N}^d$ is a Generalized Numerical Semigroup (GNS) if:
 - For all $\mathbf{x}, \mathbf{y} \in S$ then $\mathbf{x} + \mathbf{y} \in S$.
 - $\mathbf{0} = (\mathbf{0}, \dots, \mathbf{0}) \in S$.
 - $\mathbb{N}^d \setminus S$ is a <u>finite</u> set.

First definitions:

- $H(S) = \mathbb{N}^d \setminus S$ the set of gaps (or holes) of *S*.
- 2 $g(S) = |\mathbb{N}^d \setminus S|$, genus of S

If d = 1 then S is a numerical semigroup.

Some useful facts and notions:

Every GNS is a finitely generated submonoid of \mathbb{N}^d

Definition

A total order, \leq , on the elements of \mathbb{N}^d is called a relaxed monomial order if it satisfies:

- i) If $\mathbf{v}, \mathbf{w} \in \mathbb{N}^d$ and if $\mathbf{v} \leq \mathbf{w}$ then $\mathbf{v} \leq \mathbf{w} + \mathbf{u}$ for any $\mathbf{u} \in \mathbb{N}^d$.
- ii) If $\mathbf{v} \in \mathbb{N}^d$ and $\mathbf{v} \neq \mathbf{0}$ then $\mathbf{0} \prec \mathbf{v}$.

All monomial orders are relaxed monomial orders (e.g. lexicographic, graded lexicographic,...)

Let $S \subseteq \mathbb{N}^d$ be a GNS and \leq be a relaxed monomial order in \mathbb{N}^d , define:

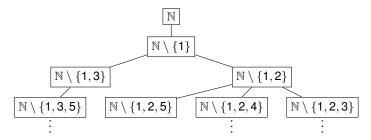
•
$$\mathbf{F}_{\leq}(S) = \max_{\leq}(\mathbf{H}(S))$$

• $U_{\leq}(S) = \{x \text{ minimal generator of } S \mid F_{\leq}(S) \prec x\}$

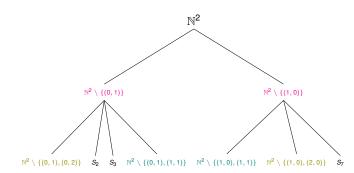
Some ideas that inspired this work

The tree of numerical semigroups up to a give genus.

M. Bras-Amorós. Bounds on the number of numerical semigroups of a given genus. *Journal of Pure and Applied Algebra*, 213(6):997–1001, 2009.



Remark: This tree contains all submonoids of \mathbb{N} up to isomorphism. This construction has been generalized for GNSs in \mathbb{N}^d , d > 1. Building a tree for GNSs in \mathbb{N}^2 , up to a given genus: (*S*, *T*) is an edge if $T = S \cup {\mathbf{F}_{\leq}(S)}$



Up to permutations, some semigroups are redundant.

$$\begin{split} \mathbb{N}^2 \setminus \{(0,1),(1,1)\} = &\langle (0,2),(0,3),(1,0),(2,1) \rangle \\ \mathbb{N}^2 \setminus \{(1,0),(1,1)\} = &\langle (2,0),(3,0),(0,1),(1,2) \rangle \end{split}$$

These semigroups are isomorphic.

Permutations and isomorphisms

Let $d \in \mathbb{N}$. We denote by $\mathbf{e}_1, \ldots, \mathbf{e}_d$ the standard basis vectors of \mathbb{N}^d . Notations:

- P_d is the set of permutations on $\{1, \ldots, d\}$.
- Let $\sigma \in \mathsf{P}_d$. If $\mathbf{x} = \sum_i^d x_i \mathbf{e}_i$, we define $\sigma(\mathbf{x}) = \sum_i^d x_i \mathbf{e}_{\sigma(i)}$.

• If
$$A \subseteq \mathbb{N}^d$$
 we define $\sigma(A) = \{\sigma(\mathbf{a}) \mid \mathbf{a} \in A\}.$

Proposition

Let *S* be a submonoid of \mathbb{N}^d and $\sigma \in \mathsf{P}_d$. Let

$$f_{\sigma}: S
ightarrow \sigma(S)$$
 defined by $f_{\sigma}(\mathbf{s}) = \sigma(\mathbf{s})$

Then f_{σ} is an isomorphism.

Moreover if S is a GNS, then $H(\sigma(S)) = \sigma(H(S))$.

Isomorphisms between GNS in \mathbb{N}^d .

Theorem

Let *S*, *T* be GNSs in \mathbb{N}^d and suppose there exists an isomorphism $f: S \to T$. Then there exists $\sigma \in P_d$ such that $T = \sigma(S)$.

Let *g*, *d* positive integers, denote:

•
$$\mathcal{S}_d = \{ S \subseteq \mathbb{N}^d \mid S \text{ is a GNS} \}.$$

•
$$\mathcal{S}_{g,d} = \{ \mathcal{S} \in \mathcal{S}_d \mid g(\mathcal{S}) = g \}.$$

We introduce in S_d the equivalence relation

 $S \simeq T \Leftrightarrow$ there exists $\sigma \in \mathsf{P}_d$ such that $T = \sigma(S)$

If $S \in S_d$, then $[S]_{\simeq}$ is the set of GNSs in \mathbb{N}^d isomorphic to S. Observe that if g(S) = g, then $[S]_{\simeq} \subseteq S_{g,d}$.

Representatives

Let \leq be a relaxed monomial order on \mathbb{N}^d and $S, S' \in \mathcal{S}_{g,d}$. Assume

•
$$H(S) = {\mathbf{h}_1 \prec \mathbf{h}_2 \prec \cdots \prec \mathbf{h}_g}$$

•
$$\mathsf{H}(\mathcal{S}') = \{\mathsf{h}'_1 \prec \mathsf{h}'_2 \prec \cdots \prec \mathsf{h}'_g\}$$

If $S \neq S'$, define:

$$\mathsf{r}_{\prec}(\mathcal{S},\mathcal{S}') = \min\{i \in \{1,\ldots,g\} \mid \mathbf{h}_i
eq \mathbf{h}'_i\}$$

Define the following total order relation on the set $S_{g,d}$:

$$S \prec_{\mathsf{R}} S' \iff \mathsf{h}_{\mathsf{r}_{\prec}(S,S')} \prec \mathsf{h}'_{\mathsf{r}_{\prec}(S,S')}$$

For $S \in \mathcal{S}_{g,d}$, denote

$$\mathsf{R}_{\preceq}(\mathcal{S}) = \min_{\preceq_{\mathsf{R}}}([\mathcal{S}]_{\simeq})$$

and we call it the representative of S with respect to \leq .

Example

Consider the following GNS:

 $S = \mathbb{N}^3 \setminus \{ (0, 1, 0), (0, 2, 0), (0, 3, 0), (1, 0, 0), (1, 1, 0), (2, 0, 0), (3, 0, 0) \}.$

$$P_3 = \{ id, \sigma_2 := (12), \sigma_3 := (13), \sigma_4 := (23), \sigma_5 := (123), \sigma_6 := (132) \}.$$

• $id(S) = \sigma_2(S) = S.$

•
$$\sigma_3(S) = \sigma_5(S) = S_2 :=$$

 $\mathbb{N}^3 \setminus \{(0,0,1), (0,0,2), (0,0,3), (0,1,1), (0,1,0), (0,2,0), (0,3,0)\}$

• $\sigma_4(S) = \sigma_6(S) = S_3 :=$ $\mathbb{N}^3 \setminus \{(0,0,1), (0,0,2), (0,0,3), (1,0,0), (1,0,1), (2,0,0), (3,0,0)\}$

If \leq is the lexicographic order, then $[S]_{\simeq} = \{S_2 \leq_R S_3 \leq_R S\}$. In particular, $R_{\leq}(S) = S_2$.

Example

Consider the following GNS:

- $S = \mathbb{N}^3 \setminus \{(0, 1, 0), (0, 2, 0), (0, 3, 0), (1, 0, 0), (1, 1, 0), (2, 0, 0), (3, 0, 0)\}.$
- $P_3 = \{ id, \sigma_2 := (12), \sigma_3 := (13), \sigma_4 := (23), \sigma_5 := (123), \sigma_6 := (132) \}.$ • $id(S) = \sigma_2(S) = S.$
 - $\sigma_3(S) = \sigma_5(S) = S_2 :=$ $\mathbb{N}^3 \setminus \{(0,0,1), (0,0,2), (0,0,3), (0,1,1), (0,1,0), (0,2,0), (0,3,0)\}$

• $\sigma_4(S) = \sigma_6(S) = S_3 :=$ $\mathbb{N}^3 \setminus \{(0,0,1), (0,0,2), (0,0,3), (1,0,0), (1,0,1), (2,0,0), (3,0,0)\}$

If \leq is the lexicographic order, then $[S]_{\simeq} = \{S_2 \leq_R S_3 \leq_R S\}$. In particular, $R_{\leq}(S) = S_2$.

Compute representatives of given genus

Let \leq be a relaxed monomial order in \mathbb{N}^d . Define

- $\mathsf{R}_{\preceq}(\mathcal{S}_d) = \{\mathsf{R}_{\preceq}(\mathcal{S}) \mid \mathcal{S} \subseteq \mathbb{N}^d \text{ and } \mathcal{S} \text{ is a GNS} \}$
- $\mathsf{R}_{\preceq}(\mathcal{S}_{g,d}) = \{\mathsf{R}_{\preceq}(\mathcal{S}) \mid \mathcal{S} \subseteq \mathbb{N}^d \text{ and } \mathcal{S} \text{ is a GNS with } \mathsf{g}(\mathcal{S}) = g\}$

Consider the transform:

 $\mathcal{J}_{d,\preceq}:\mathcal{S}_d\setminus\{\mathbb{N}^d\}\to\mathcal{S}_d\quad\text{defined by}\quad S\mapsto S\cup\{\textbf{F}_{\preceq}(S)\}$

Is it possible to restrict the transform to $R_{\leq}(S_d)$?

Lemma

Let $S \in \mathsf{R}_{\preceq}(\mathcal{S}_{g,d})$ for positive integers g, d and \preceq be a relaxed monomial order. Then $S \cup \{\mathsf{F}_{\preceq}(S)\} \in \mathsf{R}_{\preceq}(\mathcal{S}_{g-1,d})$.

Let $\mathcal{T}^{\mathsf{R}}_{d,\prec}$ be the oriented graph such that

- $R_{\leq}(S_d)$ is the set of vertices.
- (S, T) is an edge if $T = S \cup \{\mathbf{F}_{\preceq}(S)\}$

Theorem

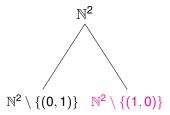
Let \leq be a relaxed monomial order in \mathbb{N}^d . Then the following holds:

- The graph $\mathcal{T}_{d,\prec}^{\mathsf{R}}$ is a tree whose root is \mathbb{N}^{d} .
- 2 $S \in \mathsf{R}_{\leq}(\mathcal{S}_{g,d})$ if and only if S is a vertex of depth g in $\mathcal{T}_{d,\prec}^{\mathsf{R}}$.

• For every $S \in R_{\preceq}(S_d)$, the children of S in $\mathcal{T}_{d,\preceq}^R$ are the GNSs $S \setminus \{n\}$ such that

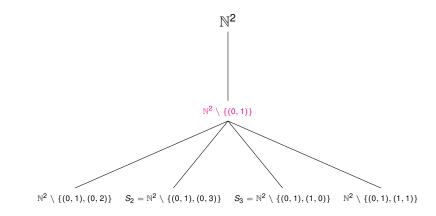
$$\mathbf{n} \in \mathbf{U}_{\preceq}(S)$$
 and $S \setminus \{\mathbf{n}\} \in \mathsf{R}_{\preceq}(\mathcal{S}_d)$

Building the tree of GNSs in \mathbb{N}^2 , with \leq lexicographic order.



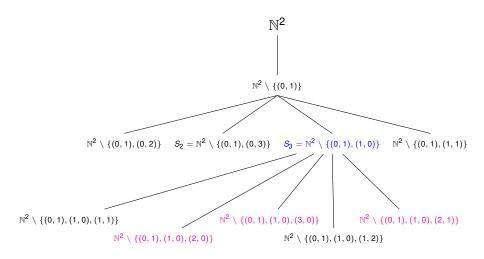
 $\mathbb{N}^2 \setminus \{(1,0)\}$ is not a representative.

Removing generators of $\mathbf{U}_{\prec}(S)$ from $S = \mathbb{N}^2 \setminus \{(0, 1)\}$.

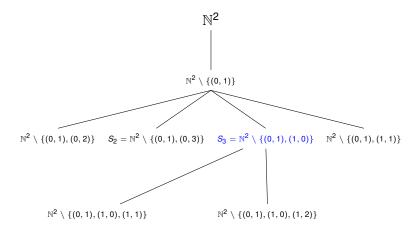


In this case, for all $\mathbf{n} \in \mathbf{U}_{\preceq}(S)$ we have $S \setminus {\mathbf{n}} \in \mathsf{R}_{\preceq}(\mathcal{S}_d)$.

Removing generators of $\mathbf{U}_{\leq}(S)$ from $S = \mathbb{N}^2 \setminus \{(0,1), (1,0)\}.$



Removing non representatives.



July 9, 2024

Question: For $T \in R_{\leq}(S_{g,d})$ and **n** is a minimal generator of T, when $T \setminus \{\mathbf{n}\} \in R_{\leq}(S_{g,d})$?

A sufficient condition:

Proposition

Let g, d be positive integers, \leq be a relaxed monomial order and $T \in \mathsf{R}_{\leq}(\mathcal{S}_{g-1,d})$. Let \mathbf{n} be a minimal generator of T such that $\mathbf{n} \leq \sigma(\mathbf{n})$ for all $\sigma \in \mathsf{P}_d$. Then $T \setminus {\mathbf{n}} \in \mathsf{R}_{\leq}(\mathcal{S}_{g,d})$.

An observation about another construction:

Let \leq be a relaxed monomial order in \mathbb{N}^d . If $S \subseteq \mathbb{N}^d$ is a GNS, define $\mathbf{m}_{\leq}(S) = \min_{\leq}(S \setminus \{0\})$.

C., Manuel Delgado, and Pedro A. García-Sánchez. Algorithms for generalized numerical semigroups, *Journal of Algebra and Its Applications*, 20(05):2150079, 2021.

It is shown how to arrange the set $S_{g,d}$ in a tree. This construction is related to the transform

$$\mathcal{O}_{\preceq}: \mathcal{S}_{g,d} o \mathcal{S}_{g,d} \quad \text{with} \quad \mathcal{S} \mapsto (\mathcal{S} \cup \{\mathsf{F}_{\preceq}(\mathcal{S})\}) \setminus \{\mathsf{m}_{\preceq}(\mathcal{S})\}$$

Is it possible to restrict the transform to $R_{\leq}(S_{g,d})$?

Let $S \in \mathsf{R}_{\preceq}(\mathcal{S}_{g,d})$

- If \leq is the lexicographic order, then $\mathcal{O}_{\leq}(S) \in \mathsf{R}_{\leq}(\mathcal{S}_{g,d})$ for all *S*.
- If ≤ is the graded lexicographic order, then O_≤(S) ∉ R_≤(S_{g,d}) for some S.

Example

Let \leq be the graded lexicographic order in \mathbb{N}^2 .

$$S = \mathbb{N}^2 \setminus \{(0, 1), (1, 0), (0, 2), (1, 1), (2, 0), \ (0, 3), (1, 2), (3, 0), (4, 0), (4, 1)\}$$

 $S \in \mathsf{R}_{\preceq}(\mathcal{S}_{10,2})$, but $\mathcal{O}_{\preceq}(S) \notin \mathsf{R}_{\preceq}(\mathcal{S}_{10,2})$. In fact:

$$egin{aligned} &\mathcal{O}_{\preceq}(S)=\!S\cup\{(4,1)\}\setminus\{(2,1)\}=\ &\mathbb{N}^2ackslash\{(0,1),(1,0),(0,2),(1,1),(2,0)\ &(0,3),(1,2),(2,1),(3,0),(4,0)\} \end{aligned}$$

Question: For what kind of relaxed monomial order is it possible to restrict \mathcal{O}_{\leq} to $\mathsf{R}_{\leq}(\mathcal{S}_{g,d})$?

M. Delgado, P. A. García-Sánchez, J. Morais, NumericalSgps, A package for numerical semigroups, Version 1.3.1 dev (2023), Refereed GAP package, https://gap-packages.github.io/numericalsgps.

g	n _{g,2}	N _{g,2}	n _{g,3}	$N_{g,3}$	$N_{g,4}$	$N_{g,5}$	N _{g,6}
1	2	1	3	1	1	1	1
2	7	4	15	4	4	4	4
3	23	12	67	15	15	15	15
4	71	37	292	59	64	64	64
5	210	107	1215	224	270	277	277
6	638	323	5075	903	1254	1344	1355
7	1894	953	20936	3611	5945	6810	
8	5570	2798	85842	14603	29132	36536	
9	16220	8128	349731	58954			
10	46898	23486	1418323	237956			
11	134856	67477					
12	386354	193285					
13	1102980	551628					
14	3137592	1569107					

Theorem

Let g be a positive integer. Then $N_{g,d} = N_{g,g}$ for all $d \ge g$.

Carmelo Cisto (University of Messina) GNS up to permutations of coordinates

Equivariant GNSs

We say that $S \subseteq \mathbb{N}^d$ is an equivariant GNS if $[S]_{\simeq} = \{S\}$, that is:

$$\sigma(S) = S$$
 for all $\sigma \in \mathsf{P}_d$

Equivalently, S is equivariant if and only if $\sigma(H(S)) = H(S)$ for all $\sigma \in P_d$.

Example

The following GNS is equivariant:

 $\mathcal{S} = \mathbb{N}^3 \setminus \{(0,0,1), (0,0,2), (0,1,0), (0,2,0), (1,0,0), (1,1,1), (2,0,0)\}.$

Consider $\sigma = (2,3), \tau = (13) \in P_3$ and the following:

 $\boldsymbol{\mathcal{S}}' = \mathbb{N}^3 \backslash \{(0,0,1), (0,0,2), (0,0,3), (0,1,0), (0,1,1), (0,2,0), (0,3,0)\}.$

 $\sigma(\mathcal{S}') = \mathcal{S}'$ but \mathcal{S}' is not equivariant since $\tau(\mathcal{S}') \neq \mathcal{S}'$

A tree containing all equivariant GNSs

For
$$\mathbf{x} \in \mathbb{N}^d$$
, define $\operatorname{orb}(\mathbf{x}) = \{\sigma(\mathbf{x}) \in \mathbb{N}^d \mid \sigma \in \mathsf{P}_d\}.$

Define \mathcal{G}_{\prec}^d be the oriented graph such that

- The set \mathcal{A}_d of all equivariant GNSs in \mathbb{N}^d is the set of vertices.
- (S, T) is an edge if $T = S \cup \operatorname{orb}(\mathbf{F}_{\preceq}(S))$

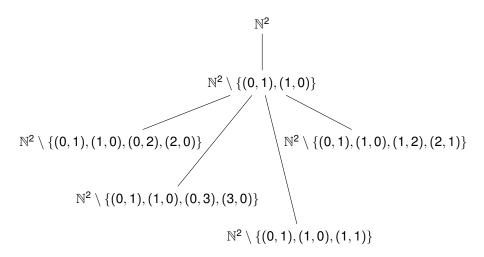
Theorem

Let \leq be a relaxed monomial order in \mathbb{N}^d . Then the graph \mathcal{G}^d_{\prec} is a tree whose root is \mathbb{N}^d .

Moreover, let $T \in \mathcal{A}_d$ and consider the disjoint union

$$\mathbf{U}_{\preceq}(T) = A_1 \sqcup A_2 \sqcup \cdots \sqcup A_r$$

such that if $\mathbf{x} \in A_i$ and $\mathbf{y} \in A_j$ with $i \neq j$ then $\mathbf{x} \notin \operatorname{orb}(\mathbf{y})$. For all $i \in \{1, \ldots, r\}$ select one element $\mathbf{x}_i \in A_i$. Then the children of T in \mathcal{G}^d_{\prec} are the semigroups $T \setminus \operatorname{orb}(\mathbf{x}_i)$ for $i \in \{1, \ldots, r\}$. Building the tree of equivariant GNSs in \mathbb{N}^2 .



 $\mathbb{N}^2 \setminus \{(0,1),(1,0)\} = \langle (0,2),(2,0),(0,3),(3,0),(1,1),(1,2),(2,1) \rangle$

Carmelo Cisto (University of Messina)

GNS up to permutations of coordinates

July 9, 2024

In the context of numerical semigroups and affine semigroup there are different graph-tree construction to produce families of semigroups with prescribed properties.

- M. Bernardini, W. Tenório, G. Tizziotti: The corner element of generalized numerical semigroups. Results Math. 77, no.141, 2022.
- J. I. García-Garcá, D. Marín-Aragón, D., A. Sánchez-Loureiro, A. Vigneron Tenorio: Some Properties of Affine C-semigroups. Results Math, 79, no.52, 2024.

Investigate how these procedures can be refined in order to produce only one generalized numerical semigroup in every class of isomorphism.

Thank for your attention