Arf Numerical Semigroups with Prime Power Multiplicity

Halil İbrahim Karakaş Başkent University, Ankara-Türkiye

Joint work with N. Tutaş

International Meeting on Numerical Semigroups

Jerez de la Frontera (CÁDIZ – SPAIN) July 10, 2024

Notations

 \mathbb{Z} : the set of integers, \mathbb{N} : the set of positive integers, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}.$

Let $A \subseteq \mathbb{N}_0$. The submonoid of \mathbb{N}_0 generated by A is

$$
\langle A \rangle = \left\{ \sum_{i=1}^r x_i a_i : r \in \mathbb{N}, x_1, \dots, x_r \in \mathbb{N}_0, a_1, \dots, a_r \in A \right\}
$$

A submonoid A of \mathbb{N}_0 is called a numerical semigroup if its complement in \mathbb{N}_0 is **finite.**

A submonoid $\langle A \rangle$ is a numerical semigroup if and only if $g.c.d(A) = 1$.

If $A = \{a_1, \ldots, a_e\}$, we write $\langle A \rangle = \langle a_1, \ldots, a_e \rangle$.

```
For a numerical semigroup S,
```

```
m(S): the multiplicity of S; e(S): the embedding dimension of S;
f(S): the Frobenius number of S; c(S): the conductor of S;
g(S): the genus of S; R(S): the ratio of S.
```
S : **a numerical semigroup,** $m(S) = m$, $e(S) = e$, $f(S) = f$, $c(S) = c$, $g(S) = g$, and $R(S) = R$.

Customary notation for $S \neq \mathbb{N}_0$ with conductor c :

$$
S = \{s_0 = 0, s_1 = m, s_2, \ldots, s_{n-1}, s_n = c \rightarrow \}
$$

where s_{i-1} < s_i for 1 ≤ *i* ≤ *n*. The elements s_0 = 0, s_1 =*m*, s_2 , \dots , s_{n-1} are called small **elements of** *S***. The number of small elements is** $n = n(S) = |S \cap \{0, 1, \ldots, f\}|$ **.**

It is easily observed that $q+n = c$, $n \leq q$ and thus $2n \leq c \leq 2q$.

Apéry Sets

For $a \in S \setminus \{0\}$, the Apéry set of S with respect to *a* is defined as

$$
Ap(S, a) = \{s \in S : s - a \notin S\}.
$$

We have

Ap(*S*, *a*) ={*w*(0)=0, *w*(1)*, . . . , w*(*a −* 1)}

where *w*(*i*) = min{*x* ∈ *S* : *x* ≡ *i* (mod *a*)}, 0 ≤ *i* ≤ *a*-1.

 $S = \langle a, w(1), \ldots, w(a-1) \rangle$

f(*S*) = max(*Ap*(*S, a*)) *− a.*

Taking $a = m$, we see that $S = \langle m, w(1), \ldots, w(m-1) \rangle$. Thus $e \leq m$.

Quotient of a Semigroup

For a numerical semigroup S and a positive integer *d*, the quotient $\frac{3}{2}$ of S by *d* is **definned as** *d* S_{off} S_{off}

$$
\frac{S}{d} = \{x \in \mathbb{N}_0 \, dx \in S\}.
$$

It is easy to see that \geq is a numerical semigroup containing *S*, and \geq = \mathbb{N}_0 if, and **only if** *d* ∈ *S***. It is also easy to see that if** *a* ∈ *S * {0} **and if** *d* **is a divisor of** *a***, then** *d S* \bf{N}_0 it, and *d* $\frac{\mathsf{S}}{\mathsf{S}} = \mathsf{N}_{\mathsf{0}}$ if, and

$$
Ap\left(\frac{S}{d}, \frac{a}{d}\right) = \left\{\frac{w}{d} : w \in Ap(S,a), d \text{ is a divisor of } w\right\}.
$$

Arf Semigroups

A numerical semigroup *S* **is called an Arf numerical semigroup, or simply an Arf semigroup if the following condition is satisfied:**

x, $y, z \in S$; $x \ge y \ge z \implies x + y - z \in S$. (the Arf condition)

ℕ**⁰ is an Arf semigroup.**

 $\{0, q+1\rightarrow\}$ is an Arf semigroup for any $q \in \mathbb{N}$.

S = $\langle 4, 7 \rangle$ is not an Arf semigroup: $7 + 7 - 4 \notin S$.

Note that a numerical semigroup *S* **is an Arf semigroup if and only if the Arf condition is satisfied by the small elements of** *S*.

Every Arf semigroup is of maximal embedding dimension: *e*(*S*) = *m*(*S*)

Thus if *S* is an Arf semigroup, then $\{Ap(S,m) \setminus \{0\} \cup \{m\} = \{m, w(1), \ldots, w(m-1)\}\)$, is **the minimal set of generators of** *S***.**

 \mathcal{S}_{ARF} (*m*, *c*) : the set of Arf semigroups with multiplicity *m* and conductor *c*.

NARF (*m,c*) **: the number of Arf semigroups with multiplicity** *m* **and conductor** *c***.**

In a recent paper we proved that N_{ARF} (p, c) = N_{ARF} ($p, c+p$) if p is prime and $c > 2p$.

Thus *NARF* (*p,c*) **is (eventually) a constant function when restricted to congruence classes modulo** *p.*

In the same paper we had noticed that the above property holds also for *NARF* (*m,c*) **with composite** *m***, not for all but some congruence classes modulo** *m***.**

In the present work, we prove that

$$
N_{ARF}(p^n, c) = N_{ARF}(p^n, c+p^n)
$$

if p is prime, $n \in \mathbb{N}$, $c > 2p^n$ and

 $c\equiv (tp^{n-1}+1)$ (mod $p^n)$, $1\le t\le p$ -1.

That is, *NARF* (*p n ,c*) **is (eventually) a constant function when restricted to congruence classes of** $(tp^{n-1} + 1)$ **modulo** p^n .

Theorem. Let $p,n,c \in \mathbb{N}$, where p is prime, $c \equiv (t \ p^{n-1}+1)$ (mod p^n), $1 \le t \le p-1$, and $c > 2p^n$. **Then**

$$
\mathcal{S}_{ART}(p^n, c + p^n) = \{(p^n + S) \cup \{0\} : S \in \mathcal{S}_{ART}(p^n, c) \}
$$

and thus

$$
N_{ARF}(p^n, c+p^n)=N_{ARF}(p^n, c).
$$

Lemma 1. Let *S* **be an Arf numerical semigroup and** $s \in S$ **. If** $s+1\in S$ **, then** $s+k\in S$ **for all** $k \in \mathbb{N}_0$ and thus $c \leq s$.

Lemma 2. If S is an Arf numerical semigroup and $d \in \mathbb{N}$, then $\frac{5}{4}$ is an Arf numerical semi**group. Moreover,** if d is a divisor of $m(S)$, then $m\left(\frac{S}{S}\right) = \frac{m(S)}{S}$. *d* S is an Arf *d S* $m\left|\frac{1}{n}\right|=\frac{m(n)}{n}$. d $\bigg| = \frac{m(S)}{N}$. \overline{a} d \bigcap $m(S)$ $\left| \frac{\partial u}{\partial x} \right| = \frac{\partial u}{\partial x}$. (d) d (S) $m(S)$

Lemma 3. Let *S* **be an Arf numerical semigroup with multiplicity** *m* **and conductor** *c.* **For any** *sS*{0}**,** (*s*+*S*){0} **is an Arf numerical semigroup with multiplicity** *s* **and conductor** *c*+*s***.**

Lemma 4. Let *S* **be an Arf numerical semigroup with multiplicity** *m* **and conductor** *c.* **Then** *–m*+(*S*{0}) **is an Arf numerical semigroup with multiplicity** *s*² - *m* **and conductor** *c*-*m***,** where s_2 is the third small element of S.

Lemma 1. Let *S* **be an Arf numerical semigroup and** $s \in S$ **. If** $s+1\in S$ **, then** $s+k\in S$ **for all** $k\in\mathbb{N}_0$ and thus $c \leq s$.

Lemma 2. If S is an Arf numerical semigroup and $d \in \mathbb{N}$, then \geq is an Arf numerical semigroup. Moreover, if d is a divisor of $m(S)$, then $m\left(\frac{3}{d}\right) = \frac{m(s)}{d}$. *d S* $m(S)$ *d d* $S \cap m(S)$ $m\left(\frac{S}{l}\right) = \frac{m(S)}{l}$.) d $\big)$ $m(S)$ $\left| \frac{\partial}{\partial t} \right| = \frac{m(\theta)}{l}$. (d) d (S) $m(S)$

Lemma 3. Let *S* **be an Arf numerical semigroup with multiplicity** *m* **and conductor** *c.* **For any** *sS*{0}**,** (*s*+*S*){0} **is an Arf numerical semigroup with multiplicity** *s* **and conductor** *c*+*s***.**

Lemma 4. Let *S* **be an Arf numerical semigroup with multiplicity** *m* **and conductor** *c.* **Then** *–m*+(*S*{0}) **is an Arf numerical semigroup with multiplicity** *s*² - *m* **and conductor** *c*-*m***,** where s_2 is the third small element of S.

Corollary. If the third small element of an Arf numerical semigroup *S* **is a multiple of** *m*(*S*), that is, $s_2=2m(S)$, then $-m(S)+ (S\setminus\{0\})$ is an Arf numerical semigroup with multiplicity $m(S)$, *ratio* $R(S)$ *-* $m(S)$ **and conductor** $c(S)$ *-* $m(S)$ **.**

Lemma 5. Let *S* **be an Arf numerical semigroup with multiplicity** *m***, ratio** *R***, and conductor** *c*, where $gcd(R,m) = 1$. Let r_{n-1} be the remainder just preceding the last nonzero **remainder of** *R* **and** *m* **in the Euclidean algorithm. Then**

(*i*) $R \ge c - m + r_{n-1} + 1$,
(*ii*) $Ap(S,m) \setminus \{0\} \subset (c - m, \infty)$.

Lemma 6. Let *S* **be an Arf numerical semigroup with multiplicity** *p n* **, ratio** *R***, and conductor** $c \equiv (t \ p^{n-1}+1)$ (mod p^n), where $n \geq 2$ and $t \in \{1, 2, \ldots, p-1\}$. Then $\frac{1}{n}$ is an Arf numerical ${\bf s}$ **emigroup** with multiplicity p^{n-1} and conductor $|c| \geq |\texttt{m}| = \frac{c+p-1}{2}$, whence *p* S \mathbf{S} \mathbf{S} \mathbf{S} \mathbf{S} *p* $c + p - 1$ whence *p p p* S ^{*c*+p-1} $c = \frac{c + p}{q}$ $+p-1$ whence $=-\frac{c+\mu-1}{n}$) p $\begin{cases} c+p-1 \end{cases}$ $\left| \frac{\overline{}}{\sqrt{n}} \right| = \frac{\overline{}}{\sqrt{n}}$ (p) p (S) $c+p$ $= (tp^{n-2} + 1) (mod p^{n-1}).$) and the set of \mathcal{L} $\left| \int_{t}^{t}$ $(1 - t)^{-2}$ $(1 - 4)^{-2}$ $\vert - \vert = (tp^{n})$ (p) $\left(\frac{S}{n}\right) \equiv (tp^{n-2} + 1)$ (mod p^{n-1}). *p*) is in S) $(4n^{n-2} + 1)$ $|c| - | \equiv (tp^{n-2})$ **Moreover, if** R is divisible by p , then $\frac{1}{p}$ is the ratio of $\frac{3}{p}$. *p* R *is the vertice p S*

Lemma 7. Let *S* **be an Arf numerical semigroup with multiplicity** *p n* **, ratio** *R***, and conductor** $c \equiv (t \ p^{n-1}+1) \pmod{p^n}$, where $t \in \{1, 2, \ldots, p-1\}$. Assume also that $c > 2p^n$. Then

> (*i*) $R \ge c - p^n + 3$, $n + 3$, (*ii*) Ap(*S*,*p*^{*n*})\{0} \subset (*c-p*^{*n*}, ∞).

Theorem. Let $p,n,c \in \mathbb{N}$, where p is prime, $c \equiv (t \ p^{n-1}+1)$ (mod p^n), $1 \le t \le p-1$, and $c > 2p^n$. **Then**

$$
\mathcal{S}_{ART} (p^n, c + p^n) = \{ (p^n + S) \cup \{0\} : S \in \mathcal{S}_{ART} (p^n, c) \}
$$

and thus

$$
N_{ARF}(p^n, c+p^n)=N_{ARF}(p^n, c).
$$

Proof. Let $S \in \mathcal{S}_{ART}$ (p^n, c). Applying Lemma 3 with $s = p^n$, we get \mathbb{R}

$$
\{(p^n+S)\cup\{0\}:S\in\mathcal{S}_{ARF}(p^n,c)\}\subseteq\mathcal{S}_{ARF}(p^n,c+p^n).
$$

Now, let $T \in \mathcal{S}_{ARF}(p^n, c+p^n)$. We have $R(T) \ge (c+p^n)-p^n+3 > 2 p^n$ by Lemma 7.

Therefore the second smallest nonzero element in T is $2p^n$, and thus $S = -p^n + (T \setminus \{0\})$ is an Arf numerical semigroup with multiplicity p^n and conductor $c+p^n$ - $p^n = c$ by Lemma 4.

 $Hence T = (p^n + S) \cup \{0\}$ where $S \in \mathcal{S}_{ARF}(p^n, c)$. So

$$
\mathcal{S}_{ARF}(p^n,c+p^n)\subseteq \{(p^n+S)\cup\{0\}:S\in\mathcal{S}_{ARF}(p^n,c)\},
$$

proving the desired equality. The last assertion is then obvious.

Theorem. Let $p,n,c \in \mathbb{N}$, where p is prime, $c \equiv (t \ p^{n-1}+1)$ (mod p^n), $1 \le t \le p-1$, and $c > 2p^n$. **Then**

$$
\mathcal{S}_{ARF}(p^{n}, c + p^{n}) = \{(p^{n} + S) \cup \{0\} : S \in \mathcal{S}_{ARF}(p^{n}, c) \}
$$

and thus

*N*_{*ARF}* (p^n ,*c* + p^n) = $N_{ARF}(p^n, c)$.</sub>

Corollary. Notations being as in the theorem,

 $N_{ARF} (p^n, c + hp^n) = N_{ARF}(p^n, c)$.

for any $h \in \mathbb{N}$.

Example 1. Let $S \in \mathcal{S}_{ARF}$ (16,*c*) where $c \equiv 9 \pmod{16}$, and $c > 32$. Then

The ratio *R* **of** *S* **is one of**

$$
c-12, c-6, c-4, c-3, c-2, c.
$$

There is only one Arf numerical semigroup with ratio $c - k$ for $k \in \{0, 2, 3, 6, 12\}$ and **there are** 2 **Arf numerical semigroups with ratio** *c* – 4**.**

For instance, \mathcal{S}_{ARF} (16,41) consists of the following semigroups:

$$
S_1 = \{ 0, 16, 29, 32, 35, 38, 41 \rightarrow \},
$$
\n
$$
S_2 = \{ 0, 16, 32, 35, 38, 41 \rightarrow \},
$$
\n
$$
S_3 = \{ 0, 16, 32, 37, 39, 41 \rightarrow \}, S_4 = \{ 0, 16, 32, 37, 41 \rightarrow \},
$$
\n
$$
S_5 = \{ 0, 16, 32, 38, 41 \rightarrow \},
$$
\n
$$
S_6 = \{ 0, 16, 32, 39, 41 \rightarrow \},
$$
\n
$$
S_{12} = \{ 0, 16, 32, 41 \rightarrow \}.
$$

Example 2. Let $S \in \mathcal{S}_{ARF}$ (25,*c*) where $c \equiv 6 \pmod{25}$, and $c > 50$. Then

The ratio *R* **of** *S* **is one of**

c – 22, *c* – 20, *c* – 17, *c* – 15, *c* – 14, *c* – 13, *c* – 12, *c* – 10, *c* – 9, *c* – 8, *c* – 10, *c* – 9, *c* – 8 , *c* **.**

For instance, \mathcal{S}_{ARF} (25,56) consists of the following 38 semigroups:

References

1. C. Arf, *Une interprétation algébrique de la suite ordres de multiplicité d'une branche algébrique*, Proc. London Math. Soc. **20** (1949), 256-287.

2. V. Barucci, D. E. Dobbs, and M. Fontana, *Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains*, Memoirs of the American Mathematical Society **125/598** (1997), 1-77.

3. A. Compillo, J. I. Farran, and C. Munuera, *On the parameters of algebraic geometry codes related to arf semigroups*, IEEE Transactions on Information Theory **46(7)** (2000), 2634-2638.

4. R. Fröberg, C. Gottlieb, and R. Häggkvist, *On numerical semigroups*, Semigroup Forum 3**5**(1987), 63-83.

5. P. A. Garcia-Sánchez, B. A. Heredia, H. İ. Karakaş, and J. C. Rosales, *Parametrizing arf nunu-merical semigroups*, J. Algebra and Appl. **16(11)** (2017), 1750209.

6. H. İ. Karakaş, *Arf numerical semigroups with multiplicity* 9 *and* 10, Numerical Semigroups (eds: V. Barucci and S. Chapman and M. D'Anna and R. Fr•oberg). Springer INdAM Series. Springer, Cham. **40** (2020), 163-183.

7. _________ , *Arf numerical semigroups with prime multiplicity*, Semigroup Forum **105** (2022), 478-487.

8. H. İ. Karakaş, S. İlhan, and M. Süer, *Arf numerical semigroups with multiplicity* 11 *and* 13, Turk. J. Masth **46** (2022), 1446-1458.

9. Michal Lason, *On the relation between betti number of an arf semigroup and its blowup*, Le Mathematiche **67** (2012), 75-80.

10. J. C. Rosales, *Numerical semigroups with multiplicity three and four*, Semigroup Forum **71**(2005), 323-331.

11. J. C. Rosales and P. A. Garcia-Sánchez, *Numerical Semigroups*, Springer, 2009.

12. J. C. Rosales, P. A. Garcia-Sánchez, J. I. Garcia-Garcia, and M. B. Branco, *Arf numerical semigroups*, J. of Alg. **276** (2004), 3-12.

13. M. Süer, H. İ. Karakas, and S. İlhan, *Arf numerical semigroups with multiplicity eight*, Int. J. Pure Appl. Sci. **9(2)** (2023), 393-401.

THANK YOU