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Shifted numerical semigroups

Let Mn = ⟨n, n1, . . . , nk⟩ denote a numerical semigroup and assume
that n < n1 < · · · < nk are minimal generators.

Consider Mn+m = ⟨n+m,n1 +m, . . . , nk +m⟩ with m ∈ N.

We are interested in the properties of the shifted semigroups Mn+m.

Theorem (Vu, 2014) The Betti numbers of the defining ideal ofMn+m

are eventually periodic in m with period nk − n.

This result was conjectured by Herzog and Srinivasan.
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Notation

• Let Mn = ⟨n, n+ r1, . . . , n+ rk⟩ with r1 < · · · < rk.

• F(Mn) and PF(Mn) are the Frobenius and pseudo-Frobenius
numbers of Mn.

• d = gcd(r1, . . . , rk).

• S = ⟨r1, . . . , rk⟩. This is not a numerical semigroup if d ̸= 1. The
generators might be not minimal.

• Ap(S, dn) = {i ∈ S | i− dn /∈ S}, when dn ∈ S.

• Given i ∈ S, m(i) is the minimum length of a factorization of i
with respect to r1, . . . , rk. In general, this is not the minimum
factorization length in S.

Example Consider M53 = ⟨53, 55, 59, 60⟩. We have n = 53, r1 = 2,
r2 = 6, r3 = 7, d = 1, therefore S = ⟨2, 6, 7⟩ = ⟨2, 7⟩. In this case
17 = 2× 2 + 6 + 7 and then m(17) = 4.
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Apéry set

Theorem (O’Neill, Pelayo, 2018) If n > r2k, then

Ap(Mn, n) = {i+m(i)n | i ∈ Ap(S, dn)}.

Moreover, for each i ∈ Ap(S, dn), all the factorizations of i +m(i)n in
Mn have length m(i).

If dn > r2k, then Ap(S, dn) = {i0, . . . , in−1}, where

ij =

{
dj if dj ∈ S

dj + dn if dj /∈ S

Note that |Ap(S, dn)| = n.
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A bijection

Let Pn denote the set

Pn = {i ∈ Ap(S, dn) | f ≡ i mod n for some f ∈ PF(Mn)}.

Theorem For n≫ 0, the map ψn : Pn → Pn+rk given by

i 7→

{
i if i < dn− rk

i+ drk if i ≥ dn− rk

is a bijection. This induces a bijection φn : PF(Mn) → PF(Mn+rk).

Example LetM53 = ⟨53, 55, 59, 60⟩ andM53+7 =M60 = ⟨60, 62, 66, 67⟩:

PF(M53) = {176, 421, 425, 482} P53 = {17, 50, 54, 58}
PF(M60) = {197, 537, 541, 605} P60 = {17, 57, 61, 65}
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Pseudo-Frobenius numbers

Corollary Let n≫ 0. If f ∈ PF(Mn), f ≡ i mod nwith i ∈ Ap(S, dn):

φn(f) =

{
f + (m(i)− 1)rk if i < dn− rk

f + (m(i) + 2d− 1)rk + dn if i ≥ dn− rk

Example Let M53 = ⟨53, 55, 59, 60⟩ and M53+7 = ⟨60, 62, 66, 67⟩.

PF(M53) = {176, 421, 425, 482} P53 = {17, 50, 54, 58}

Remember that d = 1, r1 = 2, r2 = 6, r3 = 7.

m(17) = 4 m(50) = 8 m(54) = 8 m(58) = 9

φ53(176) = 176 + (4− 1)× 7 = 197

φ53(421) = 421 + (8 + 1)× 7 + 53 = 537

φ53(425) = 425 + (8 + 1)× 7 + 53 = 541

φ53(482) = 482 + (9 + 1)× 7 + 53 = 605
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Pseudo-Frobenius numbers

Let n≫ 0 and define the sets

P ′
n = {i ∈ Pn | i < dn− rk}, P ′′

n = {i ∈ Pn | i ≥ dn− rk}.

Since i > dn− rk is equivalent to i+ drk > d(n+ rk)− rk, it follows

P ′
n+rk

= P ′
n and P ′′

n+rk
= {i+ drk | i ∈ P ′′

n }.

Given f ∈ PF(Mn), we denote by φλ
n(f) the image of f via the map

φn+(λ−1)rk ◦ φn+(λ−2)rk ◦ · · · ◦ φn+rk ◦ φn.

Hence, φλ
n(f) ∈ PF(Mn+λrk).

Corollary Let n≫ 0. Let f ∈ PF(Mn) be such that f ≡ i mod dnwith
i ∈ Ap(S, dn). Then

φλ
n(f) =

{
f + (m(i)− 1)λrk if i < n− rk,

f + (m(i) + (λ+ 1)d− 1)λrk + λdn if i ≥ n− rk.
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Frobenius number

Let n ≫ 0. Let f1, f2, . . . , fα ∈ PF(Mn) corresponding to elements in
P ′
n and let g1, . . . , gβ ∈ PF(Mn) corresponding to elements in P ′′

n .

For n big enough we have f1 < · · · < fα < g1 < · · · < gβ and

φλ
n(f1) < · · · < φλ

n(fα) < φλ
n(g1) < · · · < φλ

n(gβ)

for every λ ∈ N.

Proposition Let n ≫ 0 and F(Mn) ≡ i mod dn with i ∈ Ap(S, dn).
Then i ≥ dn− rk and for every λ ∈ N holds

F(Mn+λrk) = φλ
n(F(Mn)) = F(Mn) + (m(i) + (λ+ 1)d− 1)λrk + λdn
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Nearly Gorenstein numerical semigroups

LetH be a numerical semigroup andK(H) = {x ∈ N|F(H)−x /∈ H}.
The trace ideal of K(H) is tr(H) = K(H) + (H −K(H)).

Definition H is said to be nearly Gorenstein if H \ {0} ⊆ tr(H).

Definition Let H be minimally generated by h1, . . . , hk. We say that
(f1, . . . , fk) ∈ PF(H)k is an NG-vector forH , if for all f ∈ PF(H) and i

hi + fi − f ∈ H.

Proposition (Moscariello, S., 2021) H is nearly Gorenstein if and
only if there exists an NG-vector for H .
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hi + fi − f ∈ H.

Proposition (Moscariello, S., 2021) H is nearly Gorenstein if and
only if there exists an NG-vector for H .
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Nearly Gorensteinness is periodic

Theorem If n≫ 0 andMn is nearly Gorenstein, thenMn+λrk is nearly
Gorenstein for every λ ∈ N.
Moreover, if (f0, . . . , fk) is an NG-vector for Mn, then
(φλ

n(f0), . . . , φ
λ
n(fk)) is an NG-vector for Mn+λrk .

Example Let M30 = ⟨30, 32, 33, 35⟩. Then, PF(M30) = {209, 211} and
M30 is nearly Gorenstein with NG-vector (211, 209, 211, 209). It follows
that M30+5λ is nearly Gorenstein with NG-vector

(211 + 65λ+ 5λ2, 209 + 65λ+ 5λ2, 211 + 65λ+ 5λ2, 209 + 65λ+ 5λ2)

for all λ ∈ N.
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Almost symmetric numerical semigroups

Theorem (Nari, 2013) Let H = ⟨h1, . . . , hk⟩ be a numerical semi-
group. It is almost symmetric if and only if F(H) − f ∈ PF(H) for
every f ∈ PF(H) \ {F(H)}, that is

F(H)− f + hj ∈ H

for every f ∈ PF(H) and every j = 1, . . . , k.

Therefore,H is almost symmetric if and only if it is nearly Gorenstein
having NG-vector (F(H),F(H), . . . ,F(H)).

Corollary Let n ≫ 0. If Mn is almost symmetric, then Mn+λrk is al-
most symmetric for every λ ∈ N.
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Almost symmetric semigroups with even type

Herzog and Watanabe (2019) proved that, whenMn has 4 generators,
there are only finitely many m for which Mn+m is almost symmetric
of type 2.

Theorem Mn+m is not almost symmetric of even type for m ≫ 0. In
other words, Mn+m is almost symmetric of even type for only finitely
many integers m.

However, this is not true when the type is odd.

Example (Numata) Let M10 = ⟨10, 11, 13, 14⟩. Then

M10+4λ = ⟨10 + 4λ, 11 + 4λ, 13 + 4λ, 14 + 4λ⟩

is almost symmetric of type 3 for every λ ∈ N.
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Numerical semigroups having canonical reduction

Definition (Rahimi, 2020) A one-dimensional Cohen-Macaulay lo-
cal ring is said to have canonical reduction if it admits a canonical
ideal that is a reduction of the maximal ideal.

The numerical semigroup Mn has canonical reduction if and only if
n+ F(Mn)− f ∈Mn for every f ∈ PF(Mn).

This notion has been introduced independently by Branco, Faria, and
Rosales (2020) with the name positioned numerical semigroup.

Corollary If n ≫ 0 and Mn has a canonical reduction, then Mn+λrk

has a canonical reduction for every λ ∈ N.
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Residue

The residue of H is defined as res(H) = |H \ tr(H)|.

res(H) = 0 ⇐⇒ H is symmetric

res(H) ≤ 1 ⇐⇒ H is nearly Gorenstein.

The residue is a measure of how far a numerical semigroup is from
being nearly Gorenstein.

One may expect that the residue is periodic, but this is not true.

Example Let M46+11λ = ⟨46 + 11λ, 48 + 11λ, 52 + 11λ, 57 + 11λ⟩.
According to GAP, its residue should be λ+ 8.

Question Is res(Mn+λrk) linear in λ?
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Reduced type

LetR be a non-regular one-dimensional complete local domain with
residue field k, which is also a k-algebra.

Huneke, Maitra, and Mukundan (2021) introduced the reduced type
s(R) of R.

Maitra and Mukundan have studied s(R) for numerical semigroup
rings and proved that, if H has multiplicity n, the reduced type of
k[[H]] is equal to the number of gaps of H bigger than F(H)− n.

Proposition Assume n≫ 0. Then, s(k[[Mn+rk ]]) = s(k[[Mn]]).
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Thank you for your
attention!
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