Some asymptotic properties of shifted numerical semigroups

Francesco Strazzanti

University of Genoa

International Meeting on Numerical Semigroups

Jerez de la Frontera, 12th July 2024

Joint work (in progress) with Dumitru Stamate

Shifted numerical semigroups

Let $M_n = \langle n, n_1, \ldots, n_k \rangle$ denote a numerical semigroup and assume that $n < n_1 < \cdots < n_k$ are minimal generators.

Let $M_n = \langle n, n_1, \ldots, n_k \rangle$ denote a numerical semigroup and assume that $n < n_1 < \cdots < n_k$ are minimal generators.

Consider $M_{n+m} = \langle n+m, n_1+m, \ldots, n_k+m \rangle$ with $m \in \mathbb{N}$.

We are interested in the properties of the *shifted semigroups* M_{n+m} .

Let $M_n = \langle n, n_1, \ldots, n_k \rangle$ denote a numerical semigroup and assume that $n < n_1 < \cdots < n_k$ are minimal generators.

Consider $M_{n+m} = \langle n+m, n_1+m, \ldots, n_k+m \rangle$ with $m \in \mathbb{N}$.

We are interested in the properties of the *shifted semigroups* M_{n+m} .

Theorem (Vu, 2014) *The Betti numbers of the defining ideal of* M_{n+m} *are eventually periodic in* m *with period* $n_k - n$.

This result was conjectured by Herzog and Srinivasan.

• Let $M_n = \langle n, n + r_1, \ldots, n + r_k \rangle$ with $r_1 < \cdots < r_k$.

- Let $M_n = \langle n, n + r_1, \ldots, n + r_k \rangle$ with $r_1 < \cdots < r_k$.
- $F(M_n)$ and $PF(M_n)$ are the Frobenius and pseudo-Frobenius numbers of M_n .

- Let $M_n = \langle n, n + r_1, \ldots, n + r_k \rangle$ with $r_1 < \cdots < r_k$.
- $F(M_n)$ and $PF(M_n)$ are the Frobenius and pseudo-Frobenius numbers of M_n .
- $d = \gcd(r_1, \ldots, r_k)$.

- Let $M_n = \langle n, n + r_1, \ldots, n + r_k \rangle$ with $r_1 < \cdots < r_k$.
- $F(M_n)$ and $PF(M_n)$ are the Frobenius and pseudo-Frobenius numbers of M_n .
- $d = \gcd(r_1, \ldots, r_k)$.
- $S = \langle r_1, \ldots, r_k \rangle$. This is not a numerical semigroup if $d \neq 1$. The generators might be not minimal.

- Let $M_n = \langle n, n + r_1, \ldots, n + r_k \rangle$ with $r_1 < \cdots < r_k$.
- $F(M_n)$ and $PF(M_n)$ are the Frobenius and pseudo-Frobenius numbers of M_n .
- $d = \gcd(r_1, \ldots, r_k).$
- $S = \langle r_1, \ldots, r_k \rangle$. This is not a numerical semigroup if $d \neq 1$. The generators might be not minimal.
- Ap $(S, dn) = \{i \in S \mid i dn \notin S\}$, when $dn \in S$.

- Let $M_n = \langle n, n + r_1, \ldots, n + r_k \rangle$ with $r_1 < \cdots < r_k$.
- $F(M_n)$ and $PF(M_n)$ are the Frobenius and pseudo-Frobenius numbers of M_n .
- $d = \gcd(r_1, \ldots, r_k).$
- $S = \langle r_1, \ldots, r_k \rangle$. This is not a numerical semigroup if $d \neq 1$. The generators might be not minimal.
- Ap $(S, dn) = \{i \in S \mid i dn \notin S\}$, when $dn \in S$.
- Given $i \in S$, $m(i)$ is the minimum length of a factorization of i with respect to r_1, \ldots, r_k . In general, this is not the minimum factorization length in S.

- Let $M_n = \langle n, n + r_1, \ldots, n + r_k \rangle$ with $r_1 < \cdots < r_k$.
- $F(M_n)$ and $PF(M_n)$ are the Frobenius and pseudo-Frobenius numbers of M_n .
- $d = \gcd(r_1, \ldots, r_k).$
- $S = \langle r_1, \ldots, r_k \rangle$. This is not a numerical semigroup if $d \neq 1$. The generators might be not minimal.
- Ap $(S, dn) = \{i \in S \mid i dn \notin S\}$, when $dn \in S$.
- Given $i \in S$, $m(i)$ is the minimum length of a factorization of i with respect to r_1, \ldots, r_k . In general, this is not the minimum factorization length in S.

Example Consider $M_{53} = (53, 55, 59, 60)$. We have $n = 53$, $r_1 = 2$, $r_2 = 6, r_3 = 7, d = 1$, therefore $S = \langle 2, 6, 7 \rangle = \langle 2, 7 \rangle$. In this case $17 = 2 \times 2 + 6 + 7$ and then m(17) = 4.

Theorem (O'Neill, Pelayo, 2018) If $n > r_k^2$, then

 $Ap(M_n, n) = \{i + m(i)n \mid i \in Ap(S, dn)\}.$

Moreover, for each $i \in Ap(S, dn)$ *, all the factorizations of* $i + m(i)n$ *in* M_n *have length* $m(i)$ *.*

Theorem (O'Neill, Pelayo, 2018) If $n > r_k^2$, then

 $Ap(M_n, n) = \{i + \mathbf{m}(i)n \mid i \in Ap(S, dn)\}.$

Moreover, for each $i \in$ Ap(*S*, *dn*)*, all the factorizations of* $i + m(i)n$ *in* M_n *have length* $m(i)$ *.*

If
$$
dn > r_k^2
$$
, then $Ap(S, dn) = \{i_0, \ldots, i_{n-1}\}$, where

$$
i_j = \begin{cases} dj & \text{if } dj \in S \\ dj + dn & \text{if } dj \notin S \end{cases}
$$

Note that $|Ap(S, dn)| = n$.

A bijection

Let P_n denote the set

 $P_n = \{i \in \mathrm{Ap}(S, dn) \mid f \equiv i \mod n \text{ for some } f \in \mathrm{PF}(M_n)\}.$

A bijection

Let P_n denote the set

 $P_n = \{i \in Ap(S, dn) \mid f \equiv i \mod n \text{ for some } f \in PF(M_n)\}.$

Theorem For $n \gg 0$, the map $\psi_n : P_n \to P_{n+r_k}$ given by $i \mapsto$ $\int i$ if $i < dn - r_k$ $i + dr_k$ if $i \geq dn - r_k$ *is a bijection. This induces a bijection* $\varphi_n : \mathrm{PF}(M_n) \to \mathrm{PF}(M_{n+r_k}).$

A bijection

Let P_n denote the set

 $P_n = \{i \in \text{Ap}(S, dn) \mid f \equiv i \mod n \text{ for some } f \in \text{PF}(M_n)\}.$

Theorem For $n \gg 0$, the map $\psi_n : P_n \to P_{n+r_k}$ given by $i \mapsto$ $\int i$ if $i < dn - r_k$ $i + dr_k$ if $i \geq dn - r_k$

is a bijection. This induces a bijection $\varphi_n : \mathrm{PF}(M_n) \to \mathrm{PF}(M_{n+r_k}).$

Example Let $M_{53} = \langle 53, 55, 59, 60 \rangle$ and $M_{53+7} = M_{60} = \langle 60, 62, 66, 67 \rangle$: $PF(M_{53}) = \{176, 421, 425, 482\}$ $P_{53} = \{17, 50, 54, 58\}$ $PF(M_{60}) = \{197, 537, 541, 605\}$ $P_{60} = \{17, 57, 61, 65\}$

Corollary Let
$$
n \gg 0
$$
. If $f \in \text{PF}(M_n)$, $f \equiv i \mod n$ with $i \in \text{Ap}(S, dn)$:
\n
$$
\varphi_n(f) = \begin{cases} f + (\mathbf{m}(i) - 1)r_k & \text{if } i < dn - r_k \\ f + (\mathbf{m}(i) + 2d - 1)r_k + dn & \text{if } i \ge dn - r_k \end{cases}
$$

Corollary *Let* $n \gg 0$ *.* If $f \in PF(M_n)$ *,* $f \equiv i \mod n$ *with* $i \in Ap(S, dn)$ *:* $\varphi_n(f) = \begin{cases} f + (\mathbf{m}(i) - 1)r_k & \text{if } i < dn - r_k \end{cases}$ $f + (\mathbf{m}(i) + 2d - 1)r_k + dn$ *if* $i \ge dn - r_k$

Example Let $M_{53} = \langle 53, 55, 59, 60 \rangle$ and $M_{53+7} = \langle 60, 62, 66, 67 \rangle$. $PF(M_{53}) = \{176, 421, 425, 482\}$ $P_{53} = \{17, 50, 54, 58\}$ Remember that $d = 1, r_1 = 2, r_2 = 6, r_3 = 7$.

Corollary *Let* $n \gg 0$ *.* If $f \in PF(M_n)$ *,* $f \equiv i \mod n$ *with* $i \in Ap(S, dn)$ *:* $\varphi_n(f) = \begin{cases} f + (\mathbf{m}(i) - 1)r_k & \text{if } i < dn - r_k \end{cases}$ $f + (\mathbf{m}(i) + 2d - 1)r_k + dn$ *if* $i \ge dn - r_k$

Example Let $M_{53} = \langle 53, 55, 59, 60 \rangle$ and $M_{53+7} = \langle 60, 62, 66, 67 \rangle$. $PF(M_{53}) = \{176, 421, 425, 482\}$ $P_{53} = \{17, 50, 54, 58\}$ Remember that $d = 1, r_1 = 2, r_2 = 6, r_3 = 7.$

 $m(17) = 4$ $m(50) = 8$ $m(54) = 8$ $m(58) = 9$

Corollary *Let* $n \gg 0$ *. If* $f \in PF(M_n)$ *,* $f \equiv i \mod n$ *with* $i \in Ap(S, dn)$ *:* $\varphi_n(f) = \begin{cases} f + (\mathbf{m}(i) - 1)r_k & \text{if } i < dn - r_k \end{cases}$ $f + (\mathbf{m}(i) + 2d - 1)r_k + dn$ *if* $i \ge dn - r_k$

Example Let $M_{53} = \langle 53, 55, 59, 60 \rangle$ and $M_{53+7} = \langle 60, 62, 66, 67 \rangle$. $PF(M_{53}) = \{176, 421, 425, 482\}$ $P_{53} = \{17, 50, 54, 58\}$ Remember that $d = 1, r_1 = 2, r_2 = 6, r_3 = 7.$ $m(17) = 4$ $m(50) = 8$ $m(54) = 8$ $m(58) = 9$ $\varphi_{53}(176) = 176 + (4 - 1) \times 7 = 197$ $\varphi_{53}(421) = 421 + (8 + 1) \times 7 + 53 = 537$ $\varphi_{53}(425) = 425 + (8 + 1) \times 7 + 53 = 541$ $\varphi_{53}(482) = 482 + (9 + 1) \times 7 + 53 = 605$

Let $n \gg 0$ and define the sets

 $P'_n = \{i \in P_n \mid i < dn - r_k\}, \qquad P''_n = \{i \in P_n \mid i \ge dn - r_k\}.$

Let $n \gg 0$ and define the sets

 $P'_n = \{i \in P_n \mid i < dn - r_k\}, \qquad P''_n = \{i \in P_n \mid i \ge dn - r_k\}.$

Since $i > dn - r_k$ is equivalent to $i + dr_k > d(n + r_k) - r_k$, it follows

$$
P'_{n+r_k} = P'_n
$$
 and $P''_{n+r_k} = \{i + dr_k | i \in P''_n\}.$

Let $n \gg 0$ and define the sets

 $P'_n = \{i \in P_n \mid i < dn - r_k\}, \qquad P''_n = \{i \in P_n \mid i \ge dn - r_k\}.$

Since $i > dn - r_k$ is equivalent to $i + dr_k > d(n + r_k) - r_k$, it follows

$$
P'_{n+r_k} = P'_n
$$
 and $P''_{n+r_k} = \{i + dr_k | i \in P''_n\}.$

Given $f \in \mathrm{PF}(M_n)$, we denote by $\varphi_n^{\lambda}(f)$ the image of f via the map

$$
\varphi_{n+(\lambda-1)r_k} \circ \varphi_{n+(\lambda-2)r_k} \circ \cdots \circ \varphi_{n+r_k} \circ \varphi_n.
$$

Hence, $\varphi_n^{\lambda}(f) \in \mathrm{PF}(M_{n+\lambda r_k}).$

Let $n \gg 0$ and define the sets

 $P'_n = \{i \in P_n \mid i < dn - r_k\}, \qquad P''_n = \{i \in P_n \mid i \ge dn - r_k\}.$

Since $i > dn - r_k$ is equivalent to $i + dr_k > d(n + r_k) - r_k$, it follows

$$
P'_{n+r_k} = P'_n
$$
 and $P''_{n+r_k} = \{i + dr_k | i \in P''_n\}.$

Given $f \in \mathrm{PF}(M_n)$, we denote by $\varphi_n^{\lambda}(f)$ the image of f via the map

$$
\varphi_{n+(\lambda-1)r_k} \circ \varphi_{n+(\lambda-2)r_k} \circ \cdots \circ \varphi_{n+r_k} \circ \varphi_n.
$$

Hence, $\varphi_n^{\lambda}(f) \in \mathrm{PF}(M_{n+\lambda r_k}).$

Corollary *Let* $n \gg 0$ *. Let* $f \in PF(M_n)$ *be such that* $f \equiv i \mod dn$ *with* $i \in \mathrm{Ap}(S, dn)$ *. Then*

$$
\varphi_n^{\lambda}(f) = \begin{cases} f + (\mathbf{m}(i) - 1)\lambda r_k & \text{if } i < n - r_k, \\ f + (\mathbf{m}(i) + (\lambda + 1)d - 1)\lambda r_k + \lambda dn & \text{if } i \ge n - r_k. \end{cases}
$$

Frobenius number

Let $n \gg 0$. Let $f_1, f_2, \ldots, f_\alpha \in \mathrm{PF}(M_n)$ corresponding to elements in P'_n and let $g_1, \ldots, g_\beta \in \mathrm{PF}(M_n)$ corresponding to elements in P''_n .

Frobenius number

Let $n \gg 0$. Let $f_1, f_2, \ldots, f_\alpha \in \mathrm{PF}(M_n)$ corresponding to elements in P'_n and let $g_1, \ldots, g_\beta \in \mathrm{PF}(M_n)$ corresponding to elements in P''_n .

For *n* big enough we have $f_1 < \cdots < f_\alpha < g_1 < \cdots < g_\beta$ and

$$
\varphi_n^{\lambda}(f_1) < \cdots < \varphi_n^{\lambda}(f_{\alpha}) < \varphi_n^{\lambda}(g_1) < \cdots < \varphi_n^{\lambda}(g_{\beta})
$$

for every $\lambda \in \mathbb{N}$.

Frobenius number

Let $n \gg 0$. Let $f_1, f_2, \ldots, f_\alpha \in \mathrm{PF}(M_n)$ corresponding to elements in P'_n and let $g_1, \ldots, g_\beta \in \mathrm{PF}(M_n)$ corresponding to elements in P''_n .

For *n* big enough we have $f_1 < \cdots < f_\alpha < g_1 < \cdots < g_\beta$ and $\varphi_n^{\lambda}(f_1) < \cdots < \varphi_n^{\lambda}(f_{\alpha}) < \varphi_n^{\lambda}(g_1) < \cdots < \varphi_n^{\lambda}(g_{\beta})$ for every $\lambda \in \mathbb{N}$.

Proposition *Let* $n \gg 0$ *and* $F(M_n) \equiv i \mod dn$ *with* $i \in Ap(S, dn)$ *. Then* $i \geq dn - r_k$ *and for every* $\lambda \in \mathbb{N}$ *holds* $F(M_{n+\lambda r_k}) = \varphi_n^{\lambda}(F(M_n)) = F(M_n) + (m(i) + (\lambda + 1)d - 1)\lambda r_k + \lambda dn$

Let H be a numerical semigroup and $K(H) = \{x \in \mathbb{N} | F(H) - x \notin H\}.$ The *trace ideal* of $K(H)$ is $tr(H) = K(H) + (H - K(H)).$

Let H be a numerical semigroup and $K(H) = \{x \in \mathbb{N} | F(H) - x \notin H\}.$ The *trace ideal* of $K(H)$ is $tr(H) = K(H) + (H - K(H)).$

Definition H is said to be *nearly Gorenstein* if $H \setminus \{0\} \subset \text{tr}(H)$.

Let H be a numerical semigroup and $K(H) = \{x \in \mathbb{N} | F(H) - x \notin H\}.$ The *trace ideal* of $K(H)$ is $\text{tr}(H) = K(H) + (H - K(H)).$

Definition H is said to be *nearly Gorenstein* if $H \setminus \{0\} \subset \text{tr}(H)$.

Definition Let H be minimally generated by h_1, \ldots, h_k . We say that $(f_1,\ldots,f_k)\in \mathrm{PF}(H)^k$ is an *NG-vector* for H, if for all $f\in \mathrm{PF}(H)$ and i $h_i + f_i - f \in H$.

Let H be a numerical semigroup and $K(H) = \{x \in \mathbb{N} | F(H) - x \notin H\}.$ The *trace ideal* of $K(H)$ is $tr(H) = K(H) + (H - K(H)).$

Definition H is said to be *nearly Gorenstein* if $H \setminus \{0\} \subset \text{tr}(H)$.

Definition Let H be minimally generated by h_1, \ldots, h_k . We say that $(f_1,\ldots,f_k)\in \mathrm{PF}(H)^k$ is an *NG-vector* for H, if for all $f\in \mathrm{PF}(H)$ and i $h_i + f_i - f \in H$.

Proposition (Moscariello, S., 2021) H *is nearly Gorenstein if and only if there exists an NG-vector for* H*.*

Nearly Gorensteinness is periodic

Theorem If $n \gg 0$ and M_n is nearly Gorenstein, then $M_{n+\lambda r_k}$ is nearly *Gorenstein for every* $\lambda \in \mathbb{N}$ *. Moreover, if* (f_0, \ldots, f_k) *is an NG-vector for* M_n *, then* $(\varphi_n^{\lambda}(f_0), \ldots, \varphi_n^{\lambda}(f_k))$ is an NG-vector for $M_{n+\lambda r_k}$.

Nearly Gorensteinness is periodic

Theorem If $n \gg 0$ and M_n is nearly Gorenstein, then $M_{n+\lambda r_k}$ is nearly *Gorenstein for every* $\lambda \in \mathbb{N}$. *Moreover, if* (f_0, \ldots, f_k) *is an NG-vector for* M_n *, then* $(\varphi_n^{\lambda}(f_0), \ldots, \varphi_n^{\lambda}(f_k))$ is an NG-vector for $M_{n+\lambda r_k}$.

Example Let $M_{30} = (30, 32, 33, 35)$. Then, $PF(M_{30}) = \{209, 211\}$ and M_{30} is nearly Gorenstein with NG-vector (211, 209, 211, 209). It follows that $M_{30+5\lambda}$ is nearly Gorenstein with NG-vector $(211 + 65\lambda + 5\lambda^2, 209 + 65\lambda + 5\lambda^2, 211 + 65\lambda + 5\lambda^2, 209 + 65\lambda + 5\lambda^2)$ for all $\lambda \in \mathbb{N}$.

Almost symmetric numerical semigroups

Theorem (Nari, 2013) Let $H = \langle h_1, \ldots, h_k \rangle$ be a numerical semi*group. It is almost symmetric if and only if* $F(H) - f \in PF(H)$ *for every* $f \in PF(H) \setminus \{F(H)\}\$ *, that is*

$$
\mathcal{F}(H) - f + h_j \in H
$$

for every $f \in PF(H)$ *and every* $j = 1, ..., k$ *.*

Almost symmetric numerical semigroups

Theorem (Nari, 2013) Let $H = \langle h_1, \ldots, h_k \rangle$ be a numerical semi*group. It is almost symmetric if and only if* $F(H) - f \in PF(H)$ *for every* $f \in PF(H) \setminus \{F(H)\}\$ *, that is* $F(H) - f + h_i \in H$

for every $f \in PF(H)$ *and every* $j = 1, ..., k$ *.*

Therefore, H is almost symmetric if and only if it is nearly Gorenstein having NG-vector $(F(H), F(H), \ldots, F(H))$.

Almost symmetric numerical semigroups

Theorem (Nari, 2013) Let $H = \langle h_1, \ldots, h_k \rangle$ be a numerical semi*group. It is almost symmetric if and only if* $F(H) - f \in PF(H)$ *for every* $f \in PF(H) \setminus \{F(H)\}\$ *, that is* $F(H) - f + h_i \in H$

for every $f \in PF(H)$ *and every* $j = 1, ..., k$ *.*

Therefore, H is almost symmetric if and only if it is nearly Gorenstein having NG-vector $(F(H), F(H), \ldots, F(H))$.

Corollary Let $n \gg 0$. If M_n is almost symmetric, then $M_{n+\lambda r_k}$ is al*most symmetric for every* $\lambda \in \mathbb{N}$.

Almost symmetric semigroups with even type

Herzog and Watanabe (2019) proved that, when M_n has 4 generators, there are only finitely many m for which M_{n+m} is almost symmetric of type 2.

Almost symmetric semigroups with even type

Herzog and Watanabe (2019) proved that, when M_n has 4 generators, there are only finitely many m for which M_{n+m} is almost symmetric of type 2.

Theorem M_{n+m} *is not almost symmetric of even type for* $m \gg 0$ *. In other words,* M_{n+m} *is almost symmetric of even type for only finitely many integers* m*.*

Almost symmetric semigroups with even type

Herzog and Watanabe (2019) proved that, when M_n has 4 generators, there are only finitely many m for which M_{n+m} is almost symmetric of type 2.

Theorem M_{n+m} *is not almost symmetric of even type for* $m \gg 0$ *. In other words,* M_{n+m} *is almost symmetric of even type for only finitely many integers* m*.*

However, this is not true when the type is odd.

Example (Numata) Let $M_{10} = \langle 10, 11, 13, 14 \rangle$. Then

$$
M_{10+4\lambda} = \langle 10+4\lambda, 11+4\lambda, 13+4\lambda, 14+4\lambda \rangle
$$

is almost symmetric of type 3 for every $\lambda \in \mathbb{N}$.

Definition (Rahimi, 2020) A one-dimensional Cohen-Macaulay local ring is said to have *canonical reduction* if it admits a canonical ideal that is a reduction of the maximal ideal.

Definition (Rahimi, 2020) A one-dimensional Cohen-Macaulay local ring is said to have *canonical reduction* if it admits a canonical ideal that is a reduction of the maximal ideal.

The numerical semigroup M_n has canonical reduction if and only if $n + F(M_n) - f \in M_n$ for every $f \in PF(M_n)$.

Definition (Rahimi, 2020) A one-dimensional Cohen-Macaulay local ring is said to have *canonical reduction* if it admits a canonical ideal that is a reduction of the maximal ideal.

The numerical semigroup M_n has canonical reduction if and only if $n + F(M_n) - f \in M_n$ for every $f \in PF(M_n)$.

This notion has been introduced independently by Branco, Faria, and Rosales (2020) with the name *positioned numerical semigroup*.

Definition (Rahimi, 2020) A one-dimensional Cohen-Macaulay local ring is said to have *canonical reduction* if it admits a canonical ideal that is a reduction of the maximal ideal.

The numerical semigroup M_n has canonical reduction if and only if $n + F(M_n) - f \in M_n$ for every $f \in PF(M_n)$.

This notion has been introduced independently by Branco, Faria, and Rosales (2020) with the name *positioned numerical semigroup*.

Corollary *If* $n \gg 0$ *and* M_n *has a canonical reduction, then* $M_{n+\lambda r_k}$ *has a canonical reduction for every* $\lambda \in \mathbb{N}$.

Residue

The *residue* of H is defined as $res(H) = |H \setminus tr(H)|$.

 $res(H) = 0 \Longleftrightarrow H$ is symmetric $res(H)$ < 1 \Longleftrightarrow H is nearly Gorenstein.

The residue is a measure of how far a numerical semigroup is from being nearly Gorenstein.

Residue

The *residue* of H is defined as $res(H) = |H \setminus tr(H)|$.

 $res(H) = 0 \Longleftrightarrow H$ is symmetric $res(H)$ < 1 \Longleftrightarrow H is nearly Gorenstein.

The residue is a measure of how far a numerical semigroup is from being nearly Gorenstein.

One may expect that the residue is periodic, but this is not true.

Example Let $M_{46+11\lambda} = \langle 46 + 11\lambda, 48 + 11\lambda, 52 + 11\lambda, 57 + 11\lambda \rangle$. According to GAP, its residue should be $\lambda + 8$.

Residue

The *residue* of H is defined as $res(H) = |H \setminus tr(H)|$.

 $res(H) = 0 \Longleftrightarrow H$ is symmetric $res(H)$ < 1 \Longleftrightarrow H is nearly Gorenstein.

The residue is a measure of how far a numerical semigroup is from being nearly Gorenstein.

One may expect that the residue is periodic, but this is not true.

Example Let $M_{46+11\lambda} = \langle 46 + 11\lambda, 48 + 11\lambda, 52 + 11\lambda, 57 + 11\lambda \rangle$. According to GAP, its residue should be $\lambda + 8$.

Question *Is* $res(M_{n+\lambda r_k})$ *linear in* λ ?

Let R be a non-regular one-dimensional complete local domain with residue field \Bbbk , which is also a \Bbbk -algebra.

Huneke, Maitra, and Mukundan (2021) introduced the *reduced type* $s(R)$ of R.

Let R be a non-regular one-dimensional complete local domain with residue field \Bbbk , which is also a \Bbbk -algebra.

Huneke, Maitra, and Mukundan (2021) introduced the *reduced type* $s(R)$ of R.

Maitra and Mukundan have studied $s(R)$ for numerical semigroup rings and proved that, if H has multiplicity n , the reduced type of $\mathbb{K}[[H]]$ is equal to the number of gaps of H bigger than $\mathbb{F}(H) - n$.

Let R be a non-regular one-dimensional complete local domain with residue field \Bbbk , which is also a \Bbbk -algebra.

Huneke, Maitra, and Mukundan (2021) introduced the *reduced type* $s(R)$ of R.

Maitra and Mukundan have studied $s(R)$ for numerical semigroup rings and proved that, if H has multiplicity n , the reduced type of $\mathbb{K}[[H]]$ is equal to the number of gaps of H bigger than $\mathbb{F}(H) - n$.

Proposition $Assume \, n \gg 0$. Then, $s(\mathbb{k}[[M_{n+r_k}]]) = s(\mathbb{k}[[M_n]])$.

Thank you for your attention!