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Projective monomial curves

Let N={0,1,2,---} be the set of non-negative integers.
Let a=a1,ap, - ,an € Zso with ged(ay.---,a,) = 1.

We may assume that 0 < a;, < a;, < --- < a;,, then

S. :=N(0, a; )+N(a;,, a;, —a; )+N(a;,, a; —a;,)+---+N(a;,_,,a;,—a;,_,)+N(a;,,0)

n

We call S, the projective monomial curve defined by a.

Ex

Set S = N(0,25) + N(7,25 — 7) + N(9,25 — 9) + N(16,25 — 16) + N(25,0).
Then S is projective monomial curve defined by 7,9, 16, 25.

We can study S, by using the techniques of numerical semigroups!
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Affine semigroup rings

An affine semigroup S is a finitely generated sub-semigroup of Z<.
k[S] :=Kk[xP:p € S]

is called affine semigroup rings of S. xP.x9 =xP™9 VY p,qcs.

Def

Let a=a1,ap, -+ ,an € Zso with ged(a1. -+ ,a,) = 1 and let k be a field.

We also call k[S,] the projective monomial curve defined by a.
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Semi-standard graded rings and its h-vector

R= 69120 R; : a positively graded ring with Ry = k a field.
Def
® R is standard graded W Rr= k[R1].

@ R is semi-standard graded & Ris finitely generated as k[R;]-module.

Notice that the projective monomial curve
k[Sa] = k[t 5% 1% "% g% t%n " ... g¥n—1 ¢ W1 g¥n]
is a standard graded ring with
degt?» = degs®1t¥ "% = degs™2t¥ "% = ... = degs®n-1t% -1 = deg s¥ = 1.
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Def
If R is a semi-standard graded ring, then

. _ . i ho+ bt + - 4 hyryts(R)
Hilb(R, t) := ) (dimy Ry)t' = R

i>0

where h; € Z and hgg) # 0. h(R) = (ho, h1,-- - , hy(r)) is called h-vector of R.

s(R) is called socle degree of R.
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Nearly Gorenstein

Let R = P, Ri be a positively graded ring with Ry = k. Assume that R is CM.
m = @;5oR;. wg : canonical module of R. trr(wr) := 3" cpomm,r) (M) C R.
Def and Rem (Herzog—Hibi-Stamate (2019))

@ R is nearly Gorenstein < trgr(wg) D m.

@ R is Gorenstein on Spec(R) \ {m} & (/trr(wg) D m.

In particular, R is nearly Gorenstein = R is Gorenstein on Spec R \ {m}.
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|
Nearly Gorenstein projective monomial curves with n < 4

Note that k[S,, ,,] is always Gorenstein.
Fact (M.)

Assume that k[S,] = Kk[S,,.4,,.. ,2,] is Cohen—Macaulay. The following is true:

(1) If n =3, then k[S,] is non-Gorenstein and nearly Gorenstein
<= a=kk+1,2k+1(k>1).

(2) If n =4, k[S,] is non-Gorenstein and nearly Gorenstein

<= a=1,2,3,40r 53 = Sox—1,2k+1,4k,6k+1 (k> 1).

To prove it, the following fact is a key.

Fact (M.) Assume that R =Kk[S,, ... 4,] is Cohen-Macaulay.
If R is non-Gorenstein and tr(wg) D (s, t%n), then hyry > 2. J
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-
Projective monomial curves with tr(wg) D (s%n, t%)

Note

Assume k[Sa] = Kk[Sa,,4,,25,2,] is CM but not Gorenstein. The following is true:
k[Sa] is nearly Gor < a=1,2,3,4 or S5 = So_10k+1,4k,6k+1 (k> 1).

In this case (n = 4), if we consider the condition tr(wg) D (s, t% ) instead of
the nearly Gorenstein property, we can obtain many more examples.

Ex

Take any k € Z~1. Set a =4k + 2,4k + 6,6k + 5,10k + 11 or a = 1, k, 2k, 3k.
Then R = Q[S,] is CM. Moreover, R is not nearly Gor but tr(wg) D (s, tn).
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Property tr(wg) D (5%, t* )R can be understood as a property of more general
affine semigroup rings as follows:

Let S be an affine semigroup. We assume that SN (—S) = {0} and S C N¢.
e R:=Kk[S] : CM semi-standard graded affine semigroup ring.

e Gs C N? : minimal generating system of S.

e £s:={e € Gs:x® is corresponding to 1-dim face of R>¢S}.

If R is non-Gorenstein and tr(wg) O (x°: e € Es), then hyry > 2.

Fact (M.) J

R is nearly Gorenstein = tr(wg) D (x° : e € Es) = R is Gorenstein on Spec(R) \ {m}

International Meeting on Numerical Semigroups July

Sora Miyashita (Osaka univ.) IA linear variant of nearly Gorensteinness and projective 9 /23



|
Ehrhart rings

o k : field.
e P C RY : lattice polytope

Def
Ehrhart ring of P is defined as A(P) := k[t*t],, : n € Zq, a € nPNZ9],

where t& =t - t59 for a = (o, ..., aq) € Z°.

o A(P) is CM semi-standard graded k-algebra with deg(t*t], ;) = n.
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@ For polytope P,QCRY P+ Q@ :={p+qgcR:pc P qgcQ}.
e P C RY be a lattice polytope.
@ lts floor | P| and remainder {P} defined by [Hall-K&lbl-Matsushita—M.].
e Set [P] := |apP|, where ap := min{k € Z~¢ : int(kP) N Z% # 0}.
Fact (Hall-Kdlbl-Matsushita—M.) R = A(P). J

R is nearly Gorenstein = P = [P] + {P} = R is Gorenstein on Spec(R) \ {m}.
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. tr(wg) D (x®:e€ Eg)R )
Nearly Gorenstein = = Gorenstein on Spec(R m
y S, pec(R) \ {m}
Question

@ Do the two conditions in the middle above have any relation?

@ Can above condition be captured as a property of general rings?
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Let R = @,y Ri be a Cohen—-Macaulay semi-standard graded ring.

Def
R satisfies () < \/trr(wg)1R D m. J

Rem
R is nearly Gorenstein = R satisfies () = R is Gorenstein on Spec R \ {m}. J

Thm (M.) Let k[S] be a CM semi-standard graded affine semigroup ring, then
tr(wis)) O (x° : e € Es)k[S] = k[S] satisfies (1). <= is also true if |k| = oc.

{ « P is a lattice polytope. Set Cp = R>o(P x {1}) and S = CpNZ9*!
P =[Pl +{P}
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|
Veronese subrings of rings satisfying condition (f)

Def
Let R be a positively graded ring and let n > 0 be an integer.

R(n) ‘= @j>0Rin is called the n-th Veronese subring of R.

Fact A (Herzog-Hibi—Stamate (2019))
Let R be a standard graded ring with dim R > 0.
If R is Gorenstein, then R,) is nearly Gorenstein Vn > 0.

Fact B (Hall-Kalbl-Matsushita—M.)
Let P be a lattice polytope.
If P =[P]+ {P}, then A(nP) = A(P),) is nearly Gorenstein for n > 0.

Q.

Can we generalize above results by using (f)?

v
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R = @,.20 R; : a CM semi-standard graded ring with dim R > 0.

Thm A (M.)
(1) If R satisfies (1), then so does R, for any n > 0;
(2) If R is standard graded and satisfies (&), then the following is true:

(X) Ry is nearly Gorenstein for any n > s(R/tr(wr)1R);
(Y) In particular, if R is nearly Gorenstein, then so is R, for any n > 0.

Thm B (M.) Assume that R is a semi-standard graded domain.

If R satisfies (1), then 3 a integer kg > 0 s.t. Ry, is nearly Gorenstein Vn > kg.

v
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R= @,20 R; : a CM semi-standard graded ring with dim R > 0.

Thm A (M.)

(1) If R satisfies (), then so does R, for any n > 0;

(2) If R is standard graded and satisfies (f), then the following is true:
(X) Ry is nearly Gorenstein for any n > s(R/tr(wg)1R);

(Y) In particular, if R is nearly Gorenstein, then so is R, for any n > 0.

Fact A (Herzog—Hibi—Stamate (2019))
Let R be a standard graded ring with dim R > 0.

If R is Gorenstein, then R(n) is nearly Gorenstein Vn > 0.
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|
R = @,.20 R; : a CM semi-standard graded ring with dim R > 0.

Thm B (M.) Assume that R is a semi-standard graded domain.
If R satisfies (1), then 3 a integer kg > 0 s.t. Ry, is nearly Gorenstein Vn > kg. J

Recall that the following.

Thm (M.) Let P be a lattice polytope. If P = [P] + {P}, then R satisfies (f). J

Thus, the following follows from above two Thorems.

Fact B (Hall-Kalbl-Matsushita—M.)
Let P be a lattice polytope.
If P =[P]+ {P}, then A(nP) = A(P),) is nearly Gorenstein for n > 0.
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Thm A (M.)

(1) If R satisfies (1), then so does R, for any n > 0;

(2) If R is standard graded and satisfies (1), then the following is true:
(X) Ry is nearly Gorenstein for any n > s(R/tr(wg)1R);
(Y) In particular, if R is nearly Gorenstein, then so is R, for any n > 0.

Thm B (M.) Assume that R is a semi-standard graded domain.
If R satisfies (1), then 3 a integer kg > 0 s.t. R(, is nearly Gorenstein Vn > kg.

v

Rem 1
Thm A (X) and Thm B fails if we replace (i) with Gorenstein on Spec(R) \ {m}.

Indeed, there exists a Cohen—Macaulay standard graded affine semigroup ring R

which is Gorenstein on Spec(R) \ {m} but R does not satisfy (f) for any k > 0.
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Thm A (M.)

(1) If R satisfies (1), then so does R, for any n > 0;

(2) If R is standard graded and satisfies (&), then the following is true:
(X) Ry is nearly Gorenstein for any n > s(R/tr(wg)1R);
(Y) In particular, if R is nearly Gorenstein, then so is R, for any n > 0.

Thm B (M.) Assume that R is a semi-standard graded domain.
If R satisfies (&), then 3 a integer kg > 0 s.t. R(,,) is nearly Gorenstein Vn > kg.

v

Rem 2
Thm A (2) (Y) fails if we consider semi-standard graded rings.

Indeed, there exists a nearly Gor semi-standard graded affine semigroup ring R

whose 2-Veronese subring R() is not nearly Gorenstein.
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Projective monomial curves satisfying (1)

Leta=ay, - ,an ani1 € Zso with gcd(a1,- -, an, ant1) = 1.
Notice that pd(k[Sa]) = n if k[Sa] is CM.
Ex Let n,k > 1andlet 0 <j < (n+ 1)k, j £ 0 (mod k) be an integer.
@ Puta=1,2,--- ;nn+1.
Then R = k[S,] is nearly Gorenstein with hy(g) = pd(R).
e Puta=k,2k,--- nk,(n+ 1)k, j.
Then R = K[S,] is not nearly Gorenstein.

However, R satisfies condition () with hyr) = pd(R) — 1.

Q. If R satisfies (i) with hyg)y = pd(R), then is it nearly Gorenstein?
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R : CM projective monomial curve

Prop (M.)
o If R satisfies (1), then hyry < pd(R).
o If R satisfies (i) with hyr)y = pd(R), then R is nearly Gorenstein.

Cor (M)
o If pd(R) = 2, then R satisfies () < R is nearly Gorenstein.
e If pd(R) = 3, then TFAE:
(1) R is not Gorenstein and nearly Gorenstein;
(2) R satisfies () with hyg) = pd(R);

1+3t+32+--- 436
(1—1)? '

(3) R satisfies () with Hilb(R, t) =

International Meeting on Numerical Semigroups July

Sora Miyashita (Osaka univ.) IA linear variant of nearly Gorensteinness and projective 21 /23



Let R be a CM projective monomial curve.
@ Let r(R) denote the number of minimal generating system of wrg.
o hyr) < r(R) is always true.

Unsolved problem
If R satisfies (j), then r(R) < pd(R)? J

(1) Problem is true when R is nearly Gorenstein and pd(R) < 3 or hyr) = r(R).
(2) Even when pd(R) = 3, the problem remains unsolved.

(3) If we change the assumption () into Gorenstein on the punctured spectrum,
there exists a following example which satisfies r(R) > pd(R).

Ex

R = Q[S2,5,6,0] is CM projective monomial curve with tr(wg) = m?.

Thus R is Gorenstein on Spec(R) \ {m}, however, r(R) =5 > 3 = pd(R).
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Thank you!



