A linear variant of nearly Gorensteinness and projective monomial curves

Sora Miyashita (Osaka univ.)

arXiv:2407.05629

International Meeting on Numerical Semigroups July 9th, 2024

Projective monomial curves

Let $\mathbb{N} = \{0, 1, 2, \dots\}$ be the set of non-negative integers. Let $\mathbf{a} = a_1, a_2, \cdots, a_n \in \mathbb{Z}_{>0}$ with $gcd(a_1, \cdots, a_n) = 1$. We may assume that $0 < a_{i_1} < a_{i_2} < \cdots < a_{i_n}$, then $S_{\mathbf{a}} := \mathbb{N}(0, a_{i_n}) + \mathbb{N}(a_{i_1}, a_{i_n} - a_{i_1}) + \mathbb{N}(a_{i_2}, a_{i_n} - a_{i_2}) + \cdots + \mathbb{N}(a_{i_{n-1}}, a_{i_n} - a_{i_{n-1}}) + \mathbb{N}(a_{i_n}, 0)$ We call *S***^a** the *projective monomial curve* defined by **a**.

Ex

Set $S = N(0, 25) + N(7, 25 - 7) + N(9, 25 - 9) + N(16, 25 - 16) + N(25, 0).$ Then *S* is projective monomial curve defined by 7*,* 9*,* 16*,* 25.

We can study *S***^a** by using the techniques of numerical semigroups!

An *affine semigroup S* is a finitely generated sub-semigroup of \mathbb{Z}^d .

$$
\Bbbk[S]:=\Bbbk[\textbf{x}^\textbf{p}:\textbf{p}\in S]
$$

is called *affine semigroup rings* of *S*. $\mathbf{x}^{\mathbf{p}} \cdot \mathbf{x}^{\mathbf{q}} = \mathbf{x}^{\mathbf{p+q}} \; \; \forall \; \mathbf{p}, \mathbf{q} \in S$.

Def

Let $\mathbf{a} = a_1, a_2, \dots, a_n \in \mathbb{Z}_{>0}$ with $\gcd(a_1, \dots, a_n) = 1$ and let k be a field.

We also call $\mathbb{K}[S_{a}]$ the *projective monomial curve* defined by a.

Semi-standard graded rings and its *h*-vector

 $R = \bigoplus_{i \geq 0} R_i$: a positively graded ring with $R_0 = \mathbb{k}$ a field.

Def

- *R* is *standard graded* $\stackrel{\text{def}}{\Leftrightarrow}$ $R = \mathbb{k}[R_1].$
- *R* is *semi-standard graded* $\stackrel{\text{def}}{\Leftrightarrow}$ *R* is finitely generated as $\mathbb{k}[R_1]$ -module.

Notice that the projective monomial curve

$$
\Bbbk[S_{\mathbf{a}}] \cong \Bbbk[t^{a_{i_n}}, s^{a_{i_1}} t^{a_{i_n}-a_{i_1}}, s^{a_{i_2}} t^{a_{i_n}-a_{i_2}}, \cdots, s^{a_{i_{n-1}}} t^{a_{i_n}-a_{i_{n-1}}}, s^{a_{i_n}}]
$$

is a standard graded ring with

 $\deg t^{a_{i_n}} = \deg s^{a_{i_1}} t^{a_{i_n} - a_{i_1}} = \deg s^{a_{i_2}} t^{a_{i_n} - a_{i_2}} = \cdots = \deg s^{a_{i_{n-1}}} t^{a_{i_n} - a_{i_{n-1}}} = \deg s^{a_{i_n}} = 1.$

Def

If *R* is a semi-standard graded ring, then

$$
\mathrm{Hilb}(R,t) := \sum_{i\geq 0} (\dim_{\Bbbk} R_i) t^i = \frac{h_0 + h_1 t + \dots + h_{s(R)} t^{s(R)}}{(1-t)^{\dim R}}
$$

where $h_i \in \mathbb{Z}$ and $h_{s(R)} \neq 0$. $h(R) = (h_0, h_1, \cdots, h_{s(R)})$ is called *h-vector* of *R*. *s*(*R*) is called *socle degree* of *R*.

Let $R = \bigoplus_{i \in \mathbb{N}} R_i$ be a positively graded ring with $R_0 = \mathbb{k}$. Assume that R is CM. $\mathfrak{m} := \oplus_{i>0} R_i$. ω_R : canonical module of R . $\mathrm{tr}_R(\omega_R) := \sum_{\phi \in \mathsf{Hom}(M,R)} \phi(M) \subset R$. **Def** and **Rem** (Herzog–Hibi–Stamate (2019))

- \bullet *R* is *nearly Gorenstein* \Leftrightarrow tr_{*R*}(ω *R*) ⊃ m.
- R is Gorenstein on $\textnormal{Spec}(R)\setminus\{\mathfrak{m}\}\Leftrightarrow \sqrt{\textnormal{tr}_R(\omega_R)}\supset \mathfrak{m}.$

In particular, *R* is nearly Gorenstein *⇒ R* is Gorenstein on Spec *R \ {*m*}*.

Nearly Gorenstein projective monomial curves with *n ≤* 4

Note that $\Bbbk[S_{a_1,a_2}]$ is always Gorenstein.

Fact (M.)

Assume that $\mathbb{k}[S_{\mathsf{a}}] = \mathbb{k}[S_{a_1, a_2, \cdots, a_n}]$ is Cohen–Macaulay. The following is true:

(1) If $n = 3$, then $\mathbb{K}[S_{a}]$ is non-Gorenstein and nearly Gorenstein \iff **a** = *k*, *k* + 1, 2*k* + 1 (*k* > 1).

(2) If $n = 4$, $\mathbb{K}[S_{a}]$ is non-Gorenstein and nearly Gorenstein \Leftrightarrow **a** = 1, 2, 3, 4 or $S_a \cong S_{2k-1,2k+1,4k,6k+1}$ ($k \ge 1$).

To prove it, the following fact is a key.

Fact (M.) Assume that $R = \mathbb{k}[S_{a_1,\cdots,a_n}]$ is Cohen–Macaulay.

If *R* is non-Gorenstein and $\text{tr}(\omega_R) \supset (s^{a_{i_n}}, t^{a_{i_n}})$, then $h_{s(R)} \geq 2$.

Projective monomial curves with $\text{tr}(\omega_R) \supset (s^{a_{i_n}}, t^{a_{i_n}})$

Note

Assume $\Bbbk[S_{\mathbf{a}}]=\Bbbk[S_{a_1,a_2,a_3,a_4}]$ is CM but not Gorenstein. The following is true: $\mathbb{K}[S_{\mathbf{a}}]$ is nearly Gor \Leftrightarrow $\mathbf{a} = 1, 2, 3, 4$ or $S_{\mathbf{a}} ≅ S_{2k-1,2k+1,4k,6k+1}$ $(k ≥ 1)$.

In this case $(n=4)$, if we consider the condition $\text{tr}(\omega_R) \supset (\mathsf{s}^{a_{i_4}}, t^{a_{i_4}})$ instead of the nearly Gorenstein property, we can obtain many more examples.

Ex

Take any $k \in \mathbb{Z}_{>1}$. Set $a = 4k + 2$, $4k + 6$, $6k + 5$, $10k + 11$ or $a = 1$, k , $2k$, $3k$. Then $R = \mathbb{Q}[S_{a}]$ is CM. Moreover, R is not nearly Gor but $\text{tr}(\omega_R) \supset (s^{a_{i_n}}, t^{a_{i_n}})$.

Property $\mathrm{tr}(\omega_R) \supset (\mathsf{s}^{a_{i_n}}, t^{a_{i_n}})R$ can be understood as a property of more general affine semigroup rings as follows:

Let *S* be an affine semigroup. We assume that $\mathcal{S} \cap (-S) = \{0\}$ and $\mathcal{S} \subset \mathbb{N}^d$.

- $R := \mathbb{K}[S]$: CM semi-standard graded affine semigroup ring.
- $G_S \subset \mathbb{N}^d$: minimal generating system of *S*.
- $E_S := \{ e \in G_S : x^e \text{ is corresponding to 1-dim face of } \mathbb{R}_{\geq 0} S \}.$

Fact (M.)

If *R* is non-Gorenstein and $\text{tr}(\omega_R) \supset (\mathbf{x}^\mathbf{e} : \mathbf{e} \in E_S)$, then $h_{s(R)} \geq 2$.

 R is nearly Gorenstein $\Rightarrow \text{tr}(\omega_R) \supset (\mathbf{x}^\mathbf{e} : \mathbf{e} \in E_S) \Rightarrow R$ is Gorenstein on $\text{Spec}(R) \setminus \{\mathfrak{m}\}$

Ehrhart rings

- $\bullet \mathbb{k}$: field.
- *P ⊂* R *d* : lattice polytope

Def

Ehrhart ring of *P* is defined as $A(P) := \mathbb{k}[\mathbf{t}^\alpha t_{d+1}^n : n \in \mathbb{Z}_{>0}, \ \alpha \in nP \cap \mathbb{Z}^d]$, where $\mathbf{t}^{\alpha} := t_1^{\alpha_1} \cdots t_d^{\alpha_d}$ for $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{Z}^d$.

 $A(P)$ is CM semi-standard graded \Bbbk -algebra with deg $(\mathbf{t}^{\alpha} t_{d+1}^{n}) = n$.

- $\mathsf{For} \ \mathsf{polytope} \ P, \ Q \subset \mathbb{R}^d, \ P + Q := \{p+q \in \mathbb{R}^d : p \in P, q \in Q\}.$
- $P \subset \mathbb{R}^d$ be a lattice polytope.
- Its $floor |P|$ and remainder ${P}$ defined by [Hall–Kölbl–Matsushita–M.].
- $\mathsf{Set}\ [P] := \lfloor a_P P \rfloor$, where $a_P := \mathsf{min}\{k \in \mathbb{Z}_{>0} : \mathsf{int}(kP) \cap \mathbb{Z}^d \neq \emptyset\}.$

Fact (Hall–Kölbl–Matsushita–M.) $R = A(P)$.

R is nearly Gorenstein $\Rightarrow P = [P] + {P} \Rightarrow R$ is Gorenstein on Spec(R) \ {m}.

$$
\textit{Nearly Gorenstein} \Rightarrow \frac{\text{tr}(\omega_R) \supset (\mathbf{x}^\mathbf{e} : \mathbf{e} \in E_{G_S})R}{P = [P] + \{P\}} \Rightarrow \textit{Gorenstein on Spec}(R) \setminus \{\mathfrak{m}\}\
$$

Question

- Do the two conditions in the middle above have any relation?
- Can above condition be captured as a property of general rings?

Let $R = \bigoplus_{i \in \mathbb{N}} R_i$ be a Cohen–Macaulay semi-standard graded ring.

Def

 R *satisfies* $(\natural) \Leftrightarrow \sqrt{\text{tr}_R(\omega_R)_1R} \supset \mathfrak{m}.$

Rem

R is nearly Gorenstein \Rightarrow *R* satisfies $(\sharp) \Rightarrow$ *R* is Gorenstein on Spec *R* \setminus {m}.

Thm (M.) Let k[*S*] be a CM semi-standard graded affine semigroup ring, then $\mathrm{tr}(\omega_{\Bbbk[S]})\supset (\mathbf{x}^\mathbf{e}:\mathbf{e}\in E_S)\Bbbk[S]\Rightarrow \Bbbk[S]$ satisfies $(\natural). \Leftarrow$ is also true if $|\Bbbk|=\infty.$ \Downarrow *← P* is a lattice polytope. Set $C_P = \mathbb{R}_{\geq 0}(P \times \{1\})$ and $S = C_P \cap \mathbb{Z}^{d+1}$ $P = [P] + {P}$

Veronese subrings of rings satisfying condition (*♮*)

Def

Let *R* be a positively graded ring and let $n > 0$ be an integer.

 $R_{(n)} := \bigoplus_{i \geq 0} R_{in}$ is called the *n*-th Veronese subring of R .

Fact A (Herzog–Hibi–Stamate (2019))

Let *R* be a standard graded ring with dim *R >* 0.

If *R* is Gorenstein, then $R_{(n)}$ is nearly Gorenstein ∀*n* > 0.

Fact B (Hall-Kölbl-Matsushita-M.)

Let *P* be a lattice polytope.

If $P = [P] + {P}$, then $A(nP) ≅ A(P)_{(n)}$ is nearly Gorenstein for $n ≫ 0$.

Q.

Can we generalize above results by using (*♮*)?

 $R = \bigoplus_{i \geq 0} R_i$: a CM semi-standard graded ring with dim $R > 0$.

Thm A (M.)

 (1) If R satisfies (\natural) , then so does $R_{(n)}$ for any $n>0;$

(2) If *R* is standard graded and satisfies (*♮*), then the following is true:

 $\mathcal{R}(X)$ $R_{(n)}$ is nearly Gorenstein for any $n > s(R/\mathrm{tr}(\omega_R)_1 R);$

(Y) In particular, if *R* is nearly Gorenstein, then so is $R_{(n)}$ for any $n > 0$.

Thm B (M.) Assume that *R* is a semi-standard graded domain. If *R* satisfies (*♮*), then *∃* a integer *k^R ≥* 0 s.t. *R*(*n*) is nearly Gorenstein *∀n > kR*. $R = \bigoplus_{i \geq 0} R_i$: a CM semi-standard graded ring with dim $R > 0$.

Thm A (M.)

- (1) If R satisfies (\natural) , then so does $R_{(n)}$ for any $n>0;$
- (2) If *R* is standard graded and satisfies (*♮*), then the following is true:
	- $\mathcal{R}(X)$ $R_{(n)}$ is nearly Gorenstein for any $n > s(R/\mathrm{tr}(\omega_R)_1 R);$
	- (Y) In particular, if *R* is nearly Gorenstein, then so is $R_{(n)}$ for any $n > 0$.

Fact A (Herzog–Hibi–Stamate (2019)) Let *R* be a standard graded ring with dim *R >* 0. If *R* is Gorenstein, then $R_{(n)}$ is nearly Gorenstein ∀*n* > 0.

 $R = \bigoplus_{i \geq 0} R_i$: a CM semi-standard graded ring with dim $R > 0$.

Thm B (M.) Assume that *R* is a semi-standard graded domain. If *R* satisfies (*♮*), then *∃* a integer *k^R ≥* 0 s.t. *R*(*n*) is nearly Gorenstein *∀n > kR*.

Recall that the following.

Thm (M.) Let *P* be a lattice polytope. If $P = [P] + {P}$, then *R* satisfies (\sharp).

Thus, the following follows from above two Thorems.

Fact B (Hall–Kölbl–Matsushita–M.)

Let *P* be a lattice polytope.

If $P = [P] + {P}$, then $A(nP) ≅ A(P)_{(n)}$ is nearly Gorenstein for $n ≫ 0$.

Thm A (M.)

- (1) If R satisfies (\natural) , then so does $R_{(n)}$ for any $n>0;$
- (2) If *R* is standard graded and satisfies (*♮*), then the following is true:
	- $\mathcal{R}(X)$ $R_{(n)}$ is nearly Gorenstein for any $n > s(R/\mathrm{tr}(\omega_R)_1 R);$
	- (Y) In particular, if *R* is nearly Gorenstein, then so is $R_{(n)}$ for any $n > 0$.

Thm B (M.) Assume that *R* is a semi-standard graded domain.

If *R* satisfies (*♮*), then *∃* a integer *k^R ≥* 0 s.t. *R*(*n*) is nearly Gorenstein *∀n > kR*.

Rem 1

Thm A (X) and Thm B fails if we replace (\sharp) with Gorenstein on Spec(R) $\{\{\mathfrak{m}\}\}\$. Indeed, there exists a Cohen–Macaulay standard graded affine semigroup ring *R* which is Gorenstein on $Spec(R) \setminus \{m\}$ but $R_{(k)}$ does not satisfy (\natural) for any $k > 0$.

Thm A (M.)

- (1) If R satisfies (\natural) , then so does $R_{(n)}$ for any $n>0;$
- (2) If *R* is standard graded and satisfies (*♮*), then the following is true:
	- (X) $R_{(n)}$ is nearly Gorenstein for any $n > s(R/\mathrm{tr}(\omega_R)_1 R);$
	- (Y) In particular, if *R* is nearly Gorenstein, then so is $R_{(n)}$ for any $n > 0$.

Thm B (M.) Assume that *R* is a semi-standard graded domain.

If *R* satisfies (*♮*), then *∃* a integer *k^R ≥* 0 s.t. *R*(*n*) is nearly Gorenstein *∀n > kR*.

Rem 2

Thm A (2) (Y) fails if we consider semi-standard graded rings.

Indeed, there exists a nearly Gor semi-standard graded affine semigroup ring *R* whose 2-Veronese subring $R_{(2)}$ is not nearly Gorenstein.

Projective monomial curves satisfying (*♮*)

Let $\mathbf{a} = a_1, \dots, a_n, a_{n+1} \in \mathbb{Z}_{>0}$ with $gcd(a_1, \dots, a_n, a_{n+1}) = 1$. Notice that $\text{pd}(\mathbb{k}[S_{\mathbf{a}}]) = n$ if $\mathbb{k}[S_{\mathbf{a}}]$ is CM.

Ex Let $n, k > 1$ and let $0 < j < (n + 1)k$, $j \not\equiv 0$ (mod *k*) be an integer.

\n- Put
$$
a = 1, 2, \dots, n, n + 1
$$
. Then $R = \mathbb{K}[S_a]$ is nearly Gorenstein with $h_{s(R)} = \text{pd}(R)$.
\n- Put $a = k, 2k, \dots, nk, (n+1)k, j$. Then $R = \mathbb{K}[S_a]$ is **not** nearly Gorenstein.
\n- However, R satisfies condition (\natural) with $h_{s(R)} = \text{pd}(R) - 1$.
\n

Q. If *R* satisfies (\natural) with $h_{s(R)} = \text{pd}(R)$, then is it nearly Gorenstein?

R : CM projective monomial curve

Prop (M.)

- \bullet If *R* satisfies (\sharp), then $h_{s(R)} \leq \text{pd}(R)$.
- If *R* satisfies (\natural) with $h_{s(R)} = \text{pd}(R)$, then *R* is nearly Gorenstein.

Cor (M.)

- \bullet If $\text{pd}(R) = 2$, then *R* satisfies (\natural) \Leftrightarrow *R* is nearly Gorenstein.
- If $pd(R) = 3$, then TFAE:
	- (1) *R* is not Gorenstein and nearly Gorenstein;
	- (2) *R* satisfies (\natural) with $h_{s(R)} = \text{pd}(R)$;

(3) *R* satisfies (4) with Hilb(*R*, *t*) =
$$
\frac{1 + 3t + 3t^2 + \dots + 3t^{s(R)}}{(1 - t)^2}
$$

.

Let *R* be a CM projective monomial curve.

- Let $r(R)$ denote the number of minimal generating system of ω_R .
- $h_{s(R)} \le r(R)$ is always true.

Unsolved problem

If *R* satisfies (\sharp), then $r(R) \leq \text{pd}(R)$?

- (1) Problem is true when *R* is nearly Gorenstein and $pd(R) \leq 3$ or $h_{s(R)} = r(R)$.
- (2) Even when $\text{pd}(R) = 3$, the problem remains unsolved.
- (3) If we change the assumption (*♮*) into Gorenstein on the punctured spectrum, there exists a following example which satisfies $r(R) > \text{pd}(R)$.

Ex

 $R = \mathbb{Q}[S_{2,5,6,9}]$ is CM projective monomial curve with $\text{tr}(\omega_R) = \mathfrak{m}^2$. Thus *R* is Gorenstein on $Spec(R) \setminus \{m\}$, however, $r(R) = 5 > 3 = pd(R)$.

Thank you!