A linear variant of nearly Gorensteinness and projective monomial curves

Sora Miyashita (Osaka univ.)

arXiv:2407.05629

International Meeting on Numerical Semigroups July 9th, 2024

International Meeting on Numerical Semigroups July

Sora Miyashita (Osaka univ.)

Projective monomial curves

Let $\mathbb{N} = \{0, 1, 2, \dots\}$ be the set of non-negative integers. Let $\mathbf{a} = a_1, a_2, \dots, a_n \in \mathbb{Z}_{>0}$ with $gcd(a_1, \dots, a_n) = 1$. We may assume that $0 < a_{i_1} < a_{i_2} < \dots < a_{i_n}$, then $S_{\mathbf{a}} := \mathbb{N}(0, a_{i_n}) + \mathbb{N}(a_{i_1}, a_{i_n} - a_{i_1}) + \mathbb{N}(a_{i_2}, a_{i_n} - a_{i_2}) + \dots + \mathbb{N}(a_{i_{n-1}}, a_{i_n} - a_{i_{n-1}}) + \mathbb{N}(a_{i_n}, 0)$ We call $S_{\mathbf{a}}$ the *projective monomial curve* defined by \mathbf{a} .

Ex

Set $S = \mathbb{N}(0,25) + \mathbb{N}(7,25-7) + \mathbb{N}(9,25-9) + \mathbb{N}(16,25-16) + \mathbb{N}(25,0)$. Then S is projective monomial curve defined by 7,9,16,25.

We can study S_a by using the techniques of numerical semigroups!

An affine semigroup S is a finitely generated sub-semigroup of \mathbb{Z}^d .

$$\Bbbk[S] := \Bbbk[\mathbf{x}^{\mathbf{p}} : \mathbf{p} \in S]$$

is called *affine semigroup rings* of *S*. $\mathbf{x}^{\mathbf{p}} \cdot \mathbf{x}^{\mathbf{q}} = \mathbf{x}^{\mathbf{p}+\mathbf{q}} \quad \forall \mathbf{p}, \mathbf{q} \in S$.

Def

Let $\mathbf{a} = a_1, a_2, \cdots, a_n \in \mathbb{Z}_{>0}$ with $gcd(a_1, \cdots, a_n) = 1$ and let \Bbbk be a field.

We also call $\Bbbk[S_a]$ the *projective monomial curve* defined by **a**.

Semi-standard graded rings and its h-vector

 $R = \bigoplus_{i \ge 0} R_i$: a positively graded ring with $R_0 = \Bbbk$ a field.

Def

- *R* is standard graded $\stackrel{\text{def}}{\Leftrightarrow} R = \Bbbk[R_1].$
- *R* is *semi-standard graded* $\stackrel{\text{def}}{\Leftrightarrow}$ *R* is finitely generated as $\Bbbk[R_1]$ -module.

Notice that the projective monomial curve

$$\Bbbk[S_{\mathbf{a}}] \cong \Bbbk[t^{a_{i_n}}, s^{a_{i_1}}t^{a_{i_n}-a_{i_1}}, s^{a_{i_2}}t^{a_{i_n}-a_{i_2}}, \cdots, s^{a_{i_{n-1}}}t^{a_{i_n}-a_{i_{n-1}}}, s^{a_{i_n}}]$$

is a standard graded ring with

 $\deg t^{a_{i_n}} = \deg s^{a_{i_1}} t^{a_{i_n} - a_{i_1}} = \deg s^{a_{i_2}} t^{a_{i_n} - a_{i_2}} = \dots = \deg s^{a_{i_{n-1}}} t^{a_{i_n} - a_{i_{n-1}}} = \deg s^{a_{i_n}} = 1.$

Def

If R is a semi-standard graded ring, then

$$\operatorname{Hilb}(R,t) := \sum_{i \ge 0} (\dim_{\Bbbk} R_i) t^i = \frac{h_0 + h_1 t + \dots + h_{s(R)} t^{s(R)}}{(1-t)^{\dim R}}$$

where $h_i \in \mathbb{Z}$ and $h_{s(R)} \neq 0$. $h(R) = (h_0, h_1, \dots, h_{s(R)})$ is called *h*-vector of *R*. s(R) is called *socle degree* of *R*.

International Meeting on Numerical Semigroups July

()

Let $R = \bigoplus_{i \in \mathbb{N}} R_i$ be a positively graded ring with $R_0 = \mathbb{k}$. Assume that R is CM. $\mathfrak{m} := \bigoplus_{i>0} R_i$. ω_R : canonical module of R. $\operatorname{tr}_R(\omega_R) := \sum_{\phi \in \operatorname{Hom}(M,R)} \phi(M) \subset R$. Def and Rem (Herzog-Hibi-Stamate (2019))

- R is nearly Gorenstein $\Leftrightarrow \operatorname{tr}_R(\omega_R) \supset \mathfrak{m}$.
- *R* is Gorenstein on $\operatorname{Spec}(R) \setminus \{\mathfrak{m}\} \Leftrightarrow \sqrt{\operatorname{tr}_R(\omega_R)} \supset \mathfrak{m}$.

In particular, *R* is nearly Gorenstein \Rightarrow *R* is Gorenstein on Spec *R* \ { \mathfrak{m} }.

Nearly Gorenstein projective monomial curves with $n \leq 4$

Note that $\mathbb{k}[S_{a_1,a_2}]$ is always Gorenstein.

Fact (M.)

Assume that $\Bbbk[S_a] = \Bbbk[S_{a_1,a_2,\cdots,a_n}]$ is Cohen–Macaulay. The following is true:

(1) If n = 3, then $\Bbbk[S_a]$ is non-Gorenstein and nearly Gorenstein $\iff \mathbf{a} = k, k + 1, 2k + 1 \ (k \ge 1).$

(2) If n = 4, $\mathbb{k}[S_a]$ is non-Gorenstein and nearly Gorenstein $\iff a = 1, 2, 3, 4$ or $S_a \cong S_{2k-1,2k+1,4k,6k+1}$ $(k \ge 1)$.

To prove it, the following fact is a key.

Fact (M.) Assume that $R = \Bbbk[S_{a_1,\dots,a_n}]$ is Cohen–Macaulay.

If R is non-Gorenstein and $tr(\omega_R) \supset (s^{a_{i_n}}, t^{a_{i_n}})$, then $h_{s(R)} \ge 2$.

Projective monomial curves with $\operatorname{tr}(\omega_R) \supset (s^{a_{i_n}}, t^{a_{i_n}})$

Note

Assume $\mathbb{k}[S_a] = \mathbb{k}[S_{a_1,a_2,a_3,a_4}]$ is CM but not Gorenstein. The following is true: $\mathbb{k}[S_a]$ is nearly Gor $\Leftrightarrow a = 1, 2, 3, 4$ or $S_a \cong S_{2k-1,2k+1,4k,6k+1}$ $(k \ge 1)$.

In this case (n = 4), if we consider the condition $tr(\omega_R) \supset (s^{a_{i_4}}, t^{a_{i_4}})$ instead of the nearly Gorenstein property, we can obtain many more examples.

Eх

Take any $k \in \mathbb{Z}_{>1}$. Set $\mathbf{a} = 4k + 2, 4k + 6, 6k + 5, 10k + 11$ or $\mathbf{a} = 1, k, 2k, 3k$. Then $R = \mathbb{Q}[S_{\mathbf{a}}]$ is CM. Moreover, R is not nearly Gor but $\operatorname{tr}(\omega_R) \supset (s^{a_{i_n}}, t^{a_{i_n}})$. Property $tr(\omega_R) \supset (s^{a_{i_n}}, t^{a_{i_n}})R$ can be understood as a property of more general affine semigroup rings as follows:

Let S be an affine semigroup. We assume that $S \cap (-S) = \{0\}$ and $S \subset \mathbb{N}^d$.

- $R := \Bbbk[S]$: CM semi-standard graded affine semigroup ring.
- $G_S \subset \mathbb{N}^d$: minimal generating system of S.
- $E_S := \{ \mathbf{e} \in G_S : \mathbf{x}^{\mathbf{e}} \text{ is corresponding to 1-dim face of } \mathbb{R}_{\geq 0}S \}.$

Fact (M.)

If R is non-Gorenstein and $tr(\omega_R) \supset (\mathbf{x}^{\mathbf{e}} : \mathbf{e} \in E_S)$, then $h_{s(R)} \ge 2$.

R is nearly Gorenstein \Rightarrow tr(ω_R) \supset ($\mathbf{x}^{\mathbf{e}} : \mathbf{e} \in E_S$) \Rightarrow *R* is Gorenstein on Spec(*R*) \ { \mathfrak{m} }

Ehrhart rings

- $\bullet \ \Bbbk : field.$
- $P \subset \mathbb{R}^d$: lattice polytope

Def

Ehrhart ring of *P* is defined as $A(P) := \mathbb{k}[\mathbf{t}^{\alpha} t_{d+1}^n : n \in \mathbb{Z}_{>0}, \ \alpha \in nP \cap \mathbb{Z}^d]$, where $\mathbf{t}^{\alpha} := t_1^{\alpha_1} \cdots t_d^{\alpha_d}$ for $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{Z}^d$.

• A(P) is CM semi-standard graded k-algebra with deg $(\mathbf{t}^{\alpha} t_{d+1}^{n}) = n$.

- For polytope $P, Q \subset \mathbb{R}^d$, $P + Q := \{p + q \in \mathbb{R}^d : p \in P, q \in Q\}$.
- $P \subset \mathbb{R}^d$ be a lattice polytope.
- Its *floor* [P] and remainder $\{P\}$ defined by [Hall-Kölbl-Matsushita-M.].
- Set $[P] := \lfloor a_P P \rfloor$, where $a_P := \min\{k \in \mathbb{Z}_{>0} : \operatorname{int}(kP) \cap \mathbb{Z}^d \neq \emptyset\}$.

Fact (Hall–Kölbl–Matsushita–M.) R = A(P).

R is nearly Gorenstein $\Rightarrow P = [P] + \{P\} \Rightarrow R$ is Gorenstein on Spec $(R) \setminus \{\mathfrak{m}\}$.

Nearly Gorenstein
$$\Rightarrow \frac{\operatorname{tr}(\omega_R) \supset (\mathbf{x}^e : e \in E_{G_s})R}{P = [P] + \{P\}} \Rightarrow \text{Gorenstein on } \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}$$

Question

- Do the two conditions in the middle above have any relation?
- Can above condition be captured as a property of general rings?

Let $R = \bigoplus_{i \in \mathbb{N}} R_i$ be a Cohen–Macaulay semi-standard graded ring.

Def

R satisfies $(\natural) \Leftrightarrow \sqrt{\operatorname{tr}_R(\omega_R)_1 R} \supset \mathfrak{m}.$

Rem

R is nearly Gorenstein \Rightarrow *R* satisfies (\natural) \Rightarrow *R* is Gorenstein on Spec *R* \ { \mathfrak{m} }.

Thm (M.) Let $\Bbbk[S]$ be a CM semi-standard graded affine semigroup ring, then $\operatorname{tr}(\omega_{\Bbbk[S]}) \supset (\mathbf{x}^{\mathbf{e}} : \mathbf{e} \in E_{S}) \Bbbk[S] \Rightarrow \Bbbk[S]$ satisfies (\natural). \Leftarrow is also true if $|\Bbbk| = \infty$. $\Uparrow \leftarrow P$ is a lattice polytope. Set $C_{P} = \mathbb{R}_{\geq 0}(P \times \{1\})$ and $S = C_{P} \cap \mathbb{Z}^{d+1}$ $P = [P] + \{P\}$

Veronese subrings of rings satisfying condition (a)

Def

Let R be a positively graded ring and let n > 0 be an integer.

 $R_{(n)} := \bigoplus_{i \ge 0} R_{in}$ is called the *n*-th Veronese subring of *R*.

Fact A (Herzog–Hibi–Stamate (2019))

Let R be a standard graded ring with dim R > 0.

If R is Gorenstein, then $R_{(n)}$ is nearly Gorenstein $\forall n > 0$.

Fact B (Hall-Kölbl-Matsushita-M.)

Let P be a lattice polytope.

If $P = [P] + \{P\}$, then $A(nP) \cong A(P)_{(n)}$ is nearly Gorenstein for $n \gg 0$.

Q.

Can we generalize above results by using (\natural) ?

 $R = \bigoplus_{i>0} R_i$: a CM semi-standard graded ring with dim R > 0.

Thm A (M.)

(1) If R satisfies (\natural), then so does $R_{(n)}$ for any n > 0;

(2) If R is standard graded and satisfies (\natural), then the following is true:

(X) $R_{(n)}$ is nearly Gorenstein for any $n > s(R/tr(\omega_R)_1R)$;

(Y) In particular, if R is nearly Gorenstein, then so is $R_{(n)}$ for any n > 0.

Thm B (M.) Assume that R is a semi-standard graded domain. If R satisfies (\natural), then \exists a integer $k_R \ge 0$ s.t. $R_{(n)}$ is nearly Gorenstein $\forall n > k_R$. $R = \bigoplus_{i \ge 0} R_i$: a CM semi-standard graded ring with dim R > 0.

Thm A (M.)

- (1) If R satisfies (\natural), then so does $R_{(n)}$ for any n > 0;
- (2) If R is standard graded and satisfies (\natural) , then the following is true:
 - (X) $R_{(n)}$ is nearly Gorenstein for any $n > s(R/tr(\omega_R)_1R)$;
 - (Y) In particular, if R is nearly Gorenstein, then so is $R_{(n)}$ for any n > 0.

Fact A (Herzog–Hibi–Stamate (2019))

Let *R* be a standard graded ring with dim R > 0.

If *R* is Gorenstein, then $R_{(n)}$ is nearly Gorenstein $\forall n > 0$.

 $R = \bigoplus_{i \ge 0} R_i$: a CM semi-standard graded ring with dim R > 0.

Thm B (M.) Assume that R is a semi-standard graded domain. If R satisfies (\natural), then \exists a integer $k_R \ge 0$ s.t. $R_{(n)}$ is nearly Gorenstein $\forall n > k_R$.

Recall that the following.

Thm (M.) Let P be a lattice polytope. If $P = [P] + \{P\}$, then R satisfies (\natural).

Thus, the following follows from above two Thorems.

Fact B (Hall–Kölbl–Matsushita–M.)

Let P be a lattice polytope.

If $P = [P] + \{P\}$, then $A(nP) \cong A(P)_{(n)}$ is nearly Gorenstein for $n \gg 0$.

Thm A (M.)

- (1) If R satisfies (\natural), then so does $R_{(n)}$ for any n > 0;
- (2) If R is standard graded and satisfies (\natural) , then the following is true:
 - (X) $R_{(n)}$ is nearly Gorenstein for any $n > s(R/tr(\omega_R)_1R)$;
 - (Y) In particular, if R is nearly Gorenstein, then so is $R_{(n)}$ for any n > 0.

Thm B (M.) Assume that R is a semi-standard graded domain.

If R satisfies (1), then \exists a integer $k_R \ge 0$ s.t. $R_{(n)}$ is nearly Gorenstein $\forall n > k_R$.

Rem 1

Thm A (X) and Thm B fails if we replace (\natural) with Gorenstein on Spec(R) \ { \mathfrak{m} }. Indeed, there exists a Cohen–Macaulay standard graded affine semigroup ring R which is Gorenstein on Spec(R) \ { \mathfrak{m} } but $R_{(k)}$ does not satisfy (\natural) for any k > 0.

Thm A (M.)

- (1) If R satisfies (\natural), then so does $R_{(n)}$ for any n > 0;
- (2) If R is standard graded and satisfies (\natural), then the following is true:
 - (X) $R_{(n)}$ is nearly Gorenstein for any $n > s(R/tr(\omega_R)_1R)$;
 - (Y) In particular, if R is nearly Gorenstein, then so is $R_{(n)}$ for any n > 0.

Thm B (M.) Assume that R is a semi-standard graded domain.

If R satisfies (1), then \exists a integer $k_R \ge 0$ s.t. $R_{(n)}$ is nearly Gorenstein $\forall n > k_R$.

Rem 2

Thm A (2) (Y) fails if we consider semi-standard graded rings. Indeed, there exists a nearly Gor semi-standard graded affine semigroup ring R whose 2-Veronese subring $R_{(2)}$ is not nearly Gorenstein.

Projective monomial curves satisfying (\natural)

Let $\mathbf{a} = a_1, \cdots, a_n, a_{n+1} \in \mathbb{Z}_{>0}$ with $gcd(a_1, \cdots, a_n, a_{n+1}) = 1$. Notice that $pd(\Bbbk[S_a]) = n$ if $\Bbbk[S_a]$ is CM.

Ex Let n, k > 1 and let 0 < j < (n+1)k, $j \not\equiv 0 \pmod{k}$ be an integer.

Q. If *R* satisfies (\natural) with $h_{s(R)} = pd(R)$, then is it nearly Gorenstein?

R : CM projective monomial curve

Prop (M.)

- If R satisfies (\natural), then $h_{s(R)} \leq pd(R)$.
- If R satisfies (\natural) with $h_{s(R)} = pd(R)$, then R is nearly Gorenstein.

Cor (M.)

- If pd(R) = 2, then R satisfies $(\natural) \Leftrightarrow R$ is nearly Gorenstein.
- If pd(R) = 3, then TFAE:
 - (1) R is not Gorenstein and nearly Gorenstein;
 - (2) R satisfies (\natural) with $h_{s(R)} = pd(R)$;

(3) R satisfies (
$$\natural$$
) with Hilb $(R, t) = \frac{1 + 3t + 3t^2 + \dots + 3t^{s(R)}}{(1-t)^2}$

Let R be a CM projective monomial curve.

- Let r(R) denote the number of minimal generating system of ω_R .
- $h_{s(R)} \leq r(R)$ is always true.

Unsolved problem

If R satisfies (\natural), then $r(R) \leq pd(R)$?

- (1) Problem is true when R is nearly Gorenstein and $pd(R) \leq 3$ or $h_{s(R)} = r(R)$.
- (2) Even when pd(R) = 3, the problem remains unsolved.
- (3) If we change the assumption (\natural) into Gorenstein on the punctured spectrum, there exists a following example which satisfies r(R) > pd(R).

Ex

 $R = \mathbb{Q}[S_{2,5,6,9}]$ is CM projective monomial curve with $tr(\omega_R) = \mathfrak{m}^2$. Thus R is Gorenstein on $\operatorname{Spec}(R) \setminus {\mathfrak{m}}$, however, $r(R) = 5 > 3 = \operatorname{pd}(R)$.

Thank you!