Orbit codes and lattices

Rameez Raja rameeznaqash@nitsri.ac.in

Department of Mathematics

National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India

"International Meeting on Numerical Semigroups" Universidad de Cádiz (Campus de Jerez), Spain July 08 - 12, 2024

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-34-0)

イロト イ押ト イヨト イヨト

 Ω

¹ [Partitions, orbits and binary codewords](#page-3-0)

- ² [Hasse diagram with points as binary bit strings](#page-14-0)
- ³ [Automorphism orbit codes and lattice structure](#page-20-0)

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

 \leftarrow \Box \rightarrow

 \equiv \rightarrow

JOINT WORK WITH Sihem Mesnager

Department of Mathematics, University of Paris VIII, F-93526 Saint-Denis, Laboratory Analysis, Geometry and Applications, LAGA, University Sorbonne Paris Nord, CNRS, UMR 7539, F-93430, Villetaneuse, France and Telecom Paris, Polytechnic institute of Paris, 91120 Palaiseau, France

Sihem Mesnager, Rameez Raja, Orbit codes of finite Abelian groups and lattices. Discrete Math. 347 5 (2024).

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

Partitions, orbits and binary codewords

- Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$ be a partition of of a positive integer $n \in \mathbb{Z}_{>0}$, denoted by, $\lambda \vdash n$, where $\lambda_1, \ldots, \lambda_r$ represents parts of the partition and $\lambda_1 > \lambda_2 > \cdots > \lambda_r > 0$
- To every partition of a positive integer, we can associate a finite abelian p -group of rank r , where r is the number of parts in the partition, that is, corresponding to a partition λ , a finite abelian *p*-group of rank r is given as,

$$
A_{(p,\lambda)} = \mathbb{Z}/p^{\lambda_1}\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/p^{\lambda_r}\mathbb{Z}
$$
 (1)

- 4 何 ト 4 ヨ ト 4 ヨ ト

 Ω

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

 \bullet For distinct partitions and primes, a finite abelian group $\cal G$ is a direct sum of subgroups of type [\(1\)](#page-3-1), that is,

$$
\mathcal{G}=\bigoplus A_{(p,\lambda)}
$$

Consider a finite abelian p -group $\mathcal{G}_\eta = \mathbb{Z}/p^\eta\mathbb{Z}$ of rank one which corresponds to some part $\eta \in (\lambda_1, \dots, \lambda_r)$ of the partition λ . Under the group action $Aut(\mathcal{G}_n) \times \mathcal{G}_n \longrightarrow \mathcal{G}_n$, orbits $\mathcal{O}_{1,\eta},\mathcal{O}_{\rho,\eta},\ldots,\mathcal{O}_{\rho^\eta,\eta}$ of elements of \mathcal{G}_η are represented by $1, p, \ldots, p^{\eta}$, where $\mathcal{O}_{\boldsymbol{\rho}^i,\eta} = \{\boldsymbol{\rho}^i\boldsymbol{a}: (\boldsymbol{a},\boldsymbol{\rho})=1\},\, 0\leq i\leq \eta,\, (\boldsymbol{a},\boldsymbol{\rho})$ denotes the gcd of positive integers a and p.

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

イロト イ押 トイヨ トイヨト

- We follow the next procedure to construct a binary codeword of the type $0^{t_1}1^{r_1}0^{t_2}1^{r_2}\ldots 0^{t_h}1^{r_h}$ or $1^{t_1}0^{r_1}1^{t_2}0^{r_2}\ldots0^{t_h}1^{r_h}$ from \mathcal{G}_η called as *automorphism orbit codeword* . The powers t_i and r_i , $1 \le i \le h$, of 0 and 1 bit strings are determined by the structure of \mathcal{G}_n and the action $Aut(\mathcal{G}_n) \times \mathcal{G}_n \longrightarrow \mathcal{G}_n$.
	- $\textbf{1}$ If $xy \not\equiv 0 (mod \; p^{\eta})$, then assign a bit 0 to all elements x and y of some orbit in the collection $\{\mathcal{O}_{1,\eta},\mathcal{O}_{\rho,\eta},\ldots,\mathcal{O}_{\rho^\eta,\eta}\}$ of orbits of elements of \mathcal{G}_n .
	- ② If $xy \equiv 0 \pmod{p^{\eta}}$, then assign a bit 1 to all elements x and y of some orbit in the collection $\{\mathcal{O}_{1,\eta},\mathcal{O}_{\rho,\eta},\ldots,\mathcal{O}_{\rho^\eta,\eta}\}$ of orbits of elements of \mathcal{G}_n .

イロン イ押ン イヨン イヨン

 Ω

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

- Let ϕ denotes the Euler's totient function, and let $a_1,\ldots,a_{\phi(p^\eta)}$ be positive integers which are relatively prime with p^{η} . The description of two cases we consider for the part η of λ is as follows.
- Case-I: If $\eta = 2k, k \in \mathbb{Z}_{>0}$, then orbits of the group action $Aut(\mathcal{G}_n) \times \mathcal{G}_n \longrightarrow \mathcal{G}_n$ are listed as follows, $\mathcal{O}_{1,\eta}=\{ \pmb{\mathit{a}}_1,\ldots,\pmb{\mathit{a}}_{\phi(\pmb{\rho}^\eta)} \},$ $\mathcal{O}_{\pmb{\rho}, \eta} = \{\pmb{\rho} \pmb{a}_1, \dots, \pmb{\rho} \pmb{a}_{\phi(\pmb{\rho}^{\eta-1})}\},$. . . $\mathcal{O}_{p^k, \eta} = \{p^k a_1, \ldots, p^k a_{\phi(p^{\eta-k})}\},$. . . $\mathcal{O}_{p^{\eta-1},\eta} = \{p^{\eta-1}a_1,\ldots,p^{\eta-1}a_{\phi(p)}\},$ $\mathcal{O}_{p^{\eta},\eta} = \{p^{\eta}\}.$

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

 Ω

• A positive integer k is the minimum power of p such that $xy \equiv 0 (mod \,\, p^{\eta})$ for all $x,y \in \mathcal{O}_{\rho^k, \eta}.$ So we associate a bit string of $1's$ with the orbit $\mathcal{O}_{p^k, \eta}.$ The power of the bit string is equal to the cardinality of $\mathcal{O}_{\mathsf{p}^k,\eta}$, and this bit string represents an initial bit string of the intended binary codeword c_n which we construct from \mathcal{G}_n . Furthermore, $k-1$ is the maximum power of p such that for all $x, y \in \mathcal{O}_{\rho^{k-1}, \eta}$, $xy \not\equiv 0 \text{(mod } p^{\eta})$. Consequently, we associate a string of 0′s with the orbit $\mathcal{O}_{p^{k-1},\eta}$. Note that the power of this bit string is the cardinality of $\mathcal{O}_{\boldsymbol{p}^{k-1},\eta}$, and it represents another part of c_n .

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

- Next, we attach a bit string of $1's$. The $1's$ in a bit string correspond to elements of the orbit $\mathcal{O}_{\rho^{k+1},\eta}$, and $k+1$ is the minimum power of ρ such that for all $\textsf{x} \in \mathcal{O}_{\rho^{k-1},\eta}$ and $y \in \mathcal{O}_{p^{k+1},\eta}$, xy $\equiv 0 \pmod{p^{\eta}}$.
- We alternate attaching bit strings of $1's$ and $0's$ to get the desired binary codeword c_n from \mathcal{G}_n . This process is exhausted when the sum of powers of bit strings is the order of the group \mathcal{G}_n . Thus for a group \mathcal{G}_n , the automorphism orbit codeword is given as,

$$
1^{\phi(p^k)}0^{\phi(p^{k-1})}1^{\phi(p^{k+1})}0^{\phi(p^{k-2})}\dots 0^{\phi(1)}1.
$$
 (2)

 Ω

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

• The sum of powers of bit strings is,

$$
p^{\eta}-p^{\eta-1}+p^{\eta-1}-p^{\eta-2}+\cdots+2-1+1=p^{\eta}=|\mathcal{G}_{\eta}|.
$$

- Case-II. $\eta = 2k 1$, $k \in \mathbb{Z}_{>0}$. We can list orbits of the group action $Aut(\mathcal{G}_n) \times \mathcal{G}_n \longrightarrow \mathcal{G}_n$ in the same manner as we did in case-I.
- However, in this case, we cannot begin the construction of c_{η} from a bit string of 1's, since from the structure of \mathcal{G}_{η} , k is the least integral power of p such that for all $x \in \mathcal{O}_{p^{k-1},\eta}$ and $y \in \mathcal{O}_{p^k,\eta}$ the relation $xy \equiv 0 \pmod{p^{\eta}}$ holds.

 Ω

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

- Again as above, $k 1$ is the maximum power of p such that for all $x, y \in \mathcal{O}_{\rho^{k-1}, \eta}$, $xy \not\equiv 0 \text{ (mod } \; \rho^{\eta} \text{)}.$ So the initial bit string of c_η consists of 0's, which correspond to elements of the orbit $\mathcal{O}_{\boldsymbol{p}^{k-1},\eta}.$
- The next bit string of $1's$ in c_{η} correspond to elements of the orbit $\mathcal{O}_{\boldsymbol{p}^k,\eta}.$ Continue the same process of adding alternate bit strings of $0's$ and $1's$ we obtain the automorphism orbit codeword c_n of \mathcal{G}_n given by,

$$
0^{\phi(p^{k-1})}1^{\phi(p^k)}0^{\phi(p^{k-2})}\dots 0^{\phi(1)}1.
$$
 (3)

4 何 ト 4 三 ト 4

 Ω

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

- As in Case-I, the sum of powers of bit strings is the order of \mathcal{G}_n . Observe that there is one to one correspondence between orbits $\mathcal{O}_{1,\eta},\,\mathcal{O}_{\rho,\eta},\,\ldots,\,\mathcal{O}_{\rho^\eta,\eta}$ and bit strings $(b_{1,\eta}),\, (b_{\rho,\eta}),\, \ldots,\, (b_{\rho^\eta,\eta})$ of 0s and 1s. Therefore, the cardinality of any orbit equals the number of bits in the corresponding bit string of 0s or 1s.
- Fix some partition λ . Let c_n be an automorphism orbit codeword of some constituent of $A_{p,\lambda}$. Corresponding to some orbit $\mathcal{O}_{\rho^t, \eta}$, there is bit string $b_{\rho^t, \eta},$ where $0 \le t \le \eta$. Furthermore, let $\mu \neq \eta$ be another part of λ . By $b_{\rho^t,\eta} \hookrightarrow b_{\rho^t,\mu}$, we mean $b_{\rho^t,\eta}$ is a sub bit string of $b_{\rho^t,\mu}$, $0\leq l\leq\mu.$ Equivalently, $\mathcal{O}_{\boldsymbol{\rho}^t,\eta}\hookrightarrow\mathcal{O}_{\boldsymbol{\rho}^t,\mu}$ indicates that the correspondence between orbits $\mathcal{O}_{\boldsymbol{p}^t,\eta}$ and $\mathcal{O}_{\boldsymbol{p}^t,\mu}$ is one to one and $\mathcal{O}_{\rho^t, \eta} \subseteq \mathcal{O}_{\rho^{\prime}, \mu}.$ If for each t and 1, $b_{\rho^t, \eta} \hookrightarrow b_{\rho^{\prime}, \mu}.$ then we write $c_n \hookrightarrow c_n$. Rameez Raja rameeznaqash@nitsri.ac.in

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

- • Let H be some group. Then a homomorphism $\varphi : \mathcal{G} \longrightarrow \mathcal{H}$, defines a codeword c_{φ} as a vector $c_{\varphi} = (\varphi(s_1), \varphi(s_2), \ldots \varphi(s_k))$, where $\varphi(s_i)$ is the image of $s_i \in S$, $1 \le i \le k$, S is a fixed set of generators of G .
- The set $Hom(G, H)$ of all homomorphisms between groups G and H can be viewed as error-correcting codes. More specifically, a homomorphism code is defined as the set of all homomorphisms from G to H , denoted by, $C = Hom(G, H)$.
- Note that the codeword c_{φ} of a *homomorphism code* $C = Hom(G, H)$ is specified by the image of generators of a group G . In contrast, automorphism orbit codewords are based on elements of $Hom(\mathcal{G}, \mathcal{G})$, partitions and A[ut](#page-11-0)([G](#page-3-0))-orbitsof the group action $Aut(\mathcal{G})\times\mathcal{G}\longrightarrow\mathcal{G}$ [.](#page-14-0) Rameez Raja rameeznaqash@nitsri.ac.in

 Ω

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

- So, automorphism orbit codewords are generalized homomorphism codewords which provides an interesting interplay of partitions, orbits of group action and binary codewords.
- \bullet In [\[1,](#page-34-1) [2,](#page-34-2) [5\]](#page-34-3), the authors have discussed interesting generation of some graphs by binary generating codes of the type $0^{s_1}1^{r_1}0^{s_2}1^{r_2}\ldots0^{s_k}1^{r_k}$, where $s_i,r_i, 1\leq i\leq k$, are some positive integers. They have determined some fascinating algebraic and combinatorial invariants from powers s_i and r_i of bits 0 and 1 involved in $0^{s_1}1^{r_1}0^{s_2}1^{r_2}\ldots 0^{s_k}1^{r_k}.$

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

イロト イ押 トイヨト イ

 $\Omega \Omega$

Hasse diagram with points as binary bit strings

- Now, we begin to establish a poset structure of automorphism orbit codewords.
- Let $|\mathcal{G}| = n$ and $|\mathcal{H}| = m$. Consider the group action $Aut(\mathcal{G}) \times \mathcal{G} \longrightarrow \mathcal{G}$. Let $\mathcal{O}_{g_1,n}, \mathcal{O}_{g_2,n}, \ldots, \mathcal{O}_{g_k,n}$ denotes the $Aut(G)$ -orbits, where $k \leq n$ and g_1, g_2, \ldots, g_k are representatives of these orbits.
- A homomorphism $\varphi : \mathcal{G} \longrightarrow \mathcal{H}$ is said to be an orbit cover of $\mathcal G$ if for each $i, \ 1\leq i\leq k, \ \varphi(\mathcal O_{\mathbf g_i,n})\subseteq \mathcal O_{\varphi(\mathbf g_i),m},$ $\varphi(g_1), \varphi(g_2), \ldots, \varphi(g_k)$ are representatives of orbits of the action $Aut(\mathcal{H}) \times \mathcal{H} \longrightarrow \mathcal{H}$. Note that for some subset $U \subseteq \mathcal{G}$, $\varphi(\mathcal{U}) = {\varphi(u) : u \in \mathcal{U}}.$

 Ω

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

Here is our first result.

Proposition 1: Let G and H be two finite abelian p-groups of rank one such that $|\mathcal{G}|=p^\eta$ and $|\mathcal{H}|=p^\mu$. If $b_{p^t,\eta}$ and $b_{p^t,\mu}$ represents bit strings of codewords c_n and c_u , then G admits an orbit cover (\rightarrow) if and only if $t < l$ and $\eta - t > \mu - l$.

Denote by $\mathcal{S}_\mu=\{(b_{\rho^t,\mu}):0\leq t\leq\mu\}$, a set of bit strings of a codeword associated with $\mathbb{Z}/p^{\mu}\mathbb{Z}$ and let $\mathcal{S} = \Box \Box \mathcal{S}_{\mu}$ be the disjoint union over all $\mu \in \mathbb{Z}_{>0}$. $\mu \in \mathbb{Z}$ \sim 0

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

4 何 ト 4 三 ト 4

• By Proposition 1, one can verify that the relation of "orbit cover" between bit strings of automorphism orbit codewords is reflexive and transitive in fact it is a partial order on set S. Moreover, the relation "orbit cover" is independent of the parity of the power (part of a partition) of a prime discussed in equations [\(2\)](#page-8-0) and [\(3\)](#page-10-0). Below, we present a pictorial representation (poset realization) of S with respect to the partial order "orbit cover". Nodes in some part of a poset is labelled by bit strings as shown in Figure 1.

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

 $\Omega \Omega$

[Orbit codes and lattices](#page-0-0)

- A bit string $(b_{1,0})$ corresponds to the orbit $\mathcal{O}_{1,0}$ which consists of zero element only, that is, $\mathcal{O}_{1,0}$ is an orbit of the group action $Aut(G) \times G \rightarrow G$, where $G = \{0\}$.
- Thus given a partition λ , a binary code generated by automorphism orbit codewords (which we discuss in a subsequent section) can be derived through a particular construction process involving the poset S and orbits of the group action $Aut(A_{(\rho,\lambda)})\times A_{(\rho,\lambda)}\to A_{(\rho,\lambda)}.$

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

 \bullet The automorphism groups of r constituents $\Z/p^{\lambda_1}\Z, \Z/p^{\lambda_2}\Z, \ldots, \Z/p^{\lambda_r}\Z$ of a finite abelian p -group $A_{n,\lambda}$ contributes to group actions,

$$
\mathcal{A}ut(\mathbb{Z}/p^{\lambda_1}\mathbb{Z})\times \mathbb{Z}/p^{\lambda_1}\mathbb{Z}\longrightarrow \mathbb{Z}/p^{\lambda_1}\mathbb{Z},\ldots,\mathcal{A}ut(\mathbb{Z}/p^{\lambda_r}\mathbb{Z})\times \mathbb{Z}/p^{\lambda_r}\mathbb{Z}\longrightarrow \mathbb{Z}/p^{\lambda_r}\mathbb{Z}.
$$

Consequently, there are orbits, and we consider the following product of the product of orbits,

.

Rameez Raja rameeznaqash@nitsri.ac.in

$$
\prod \left(\prod_{i=1}^{\lambda_1} \mathcal{O}_{p^i, \lambda_1} \prod_{i=1}^{\lambda_2} \mathcal{O}_{p^i, \lambda_2} \cdots \prod_{i=1}^{\lambda_r} \mathcal{O}_{p^i, \lambda_r} \right).
$$
 (4)

 Ω

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

Automorphism orbit codes and lattice structure

- Given a partition, we define $\mathcal{C}_{\lambda}=(c_{\lambda_1},c_{\lambda_2},\ldots,c_{\lambda_r})$, a code which we refer as an automorphism orbit code associated with $A_{(p,\lambda)}$ (viewed as an induced subposet of \mathcal{S}). \mathcal{C}_{λ} is generated by automorphism orbit codewords c_{λ_i} , $1 \leq i \leq r$, which in turn are generated by bit strings described in the preceding section.
- Variable length code (VLC) is called entropy coding (data compression), a technique where each event is assigned a codeword with a different number of bit strings. Observe that C_{λ} is a variable length code since a fixed number of source symbols (orbits) are encoded into a variable number of out symbols (bit strings).

 Ω

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

- Notice that the codeword length in C_λ depends on the source symbol's property. A significant advantage of VLC is that it does not degrade the signal quality. Much literature is available where VLC has been studied for data compression and signal processing.
- From the structure of S, we immediately view an ideal I_{λ} of C_{λ} generated by some bit strings of codewords of C_{λ} . that is, I_{λ} as a code is generated by bit strings which correspond to elements of the product [\(4\)](#page-19-0).

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

イラト イミト

 $\Omega \Omega$

• In the following result, we make use of the partial order " \rightarrow " to establish a relation between order ideals I_{λ} and I_{λ} of S .

Theorem 1: For any two partitions λ and λ' , $A_{(p,\lambda)}$ admits an orbit cover if and only if $I_{\lambda'} \cup \mathcal{I} \subseteq I_{\lambda}$, where $\mathcal{I} \subset \mathit{Hom}(A_{(p,\lambda)}, A_{(p,\lambda')}).$

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

• It is known that there is a one-to-one correspondence between antichains and ideals, namely, the maximal elements of an ideal of a poset form an antichain and generate the ideal (see Section 3.1, [\[4\]](#page-34-4)). Furthermore, we have the following observation.

Remark: For any partition λ , \mathcal{C}_{λ} is an induced subset of S. If I denotes a code generated by bit strings of some automorphism orbit codes in S such that $\mathfrak I$ is an ideal of S, then $\mathfrak{I} \cap \mathcal{C}_{\lambda}$ is always an ideal of \mathcal{C}_{λ} . Note that \mathfrak{I} is generated by bit strings corresponding to distinct automorphism orbit codewords of C_{λ} . Suppose \Im is generated by maximal bit strings of the code C_{λ} . Then by [\[4\]](#page-34-4) (see Section 3.1), there is one-to-one correspondence between a code $\mathfrak I$ and a code represented by $\mathfrak{I} \cap \mathcal{C}_{\lambda}$.

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

Now, it is natural to observe orbits of the group action $\mathcal{G}_{p,\lambda} \times A_{p,\lambda} \longrightarrow A_{p,\lambda}$, where $\mathcal{G}_{p,\lambda}$ is an automorphism group of $A_{p,\lambda}$. Note that $\mathcal{G}_{p,\lambda}$ acts on each of the r constituents of $A_{p,\lambda}$. So similar to [\(4\)](#page-19-0) the orbits of the action are given as,

$$
\prod \left(\prod_{i=1}^{\lambda_1} \tilde{\mathcal{O}}_{p^i, \lambda_1} \prod_{i=1}^{\lambda_2} \tilde{\mathcal{O}}_{p^i, \lambda_2} \cdots \prod_{i=1}^{\lambda_r} \tilde{\mathcal{O}}_{p^i, \lambda_r} \right).
$$
 (5)

 Ω

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

- $\tilde{\mathcal{O}}_{\rho^z,\lambda_i}$, $1\leq \mathsf{z}\leq \lambda_i, \, 1\leq i\leq r,$ are $\mathcal{G}_{\rho,\lambda}$ -orbits of the group action $\mathcal{G}_{p,\lambda} \times A_{p,\lambda} \longrightarrow A_{p,\lambda}$. Define a set $\tilde{\mathcal{S}}_{\lambda} = \{ \tilde{b}_{\boldsymbol{\mathsf{p}}^{\mathsf{z}}, \lambda_{i}} : 0 \leq \boldsymbol{z} \leq \lambda_{i}, 1 \leq i \leq r \}$ to be the set of bit strings of automorphism orbit codewords $\tilde{c}_{\lambda_1}, \tilde{c}_{\lambda_2}, \ldots \tilde{c}_{\lambda_r}$
- Note that bit strings $\tilde{b}_{p^z, \lambda_i}, 0 \leq z \leq \lambda_i, 1 \leq i \leq r$, correspond to $\mathcal{G}_{\rho,\lambda}$ -orbits $\tilde{\mathcal{O}}_{\rho^z,\lambda_i}$ of r constituents of $A_{\rho,\lambda}.$

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

 Ω

- For $\tilde{b}_{\rho^z,\lambda_i},\tilde{b}_{\rho^z,\lambda_j}\in\tilde{\mathcal{S}}_\lambda$ say $\tilde{b}_{\rho^z,\lambda_i}\hookrightarrow\tilde{b}_{\rho^z,\lambda_j}$ if $\tilde{b}_{\rho^z,\lambda_i}$ is strict substring of $\widetilde{b}_{\rho^z, \lambda_j}$, that is, if $\widetilde{b}_{\rho^z, \lambda_i}$ is a substring of $\widetilde{b}_{\rho^z, \lambda_j}$ but $\widetilde{b}_{\boldsymbol{\mathsf{p}}^{\mathsf{z}},\lambda_j}$ is not a substring of $\widetilde{b}_{\boldsymbol{\mathsf{p}}^{\mathsf{z}},\lambda_i}.$
- Equivalently, $\tilde{\mathcal{O}}_{\rho^z,\lambda_i}\hookrightarrow \tilde{\mathcal{O}}_{\rho^z,\lambda_j}$ if $\tilde{\mathcal{O}}_{\rho^z,\lambda_i}$ is a subset of $\tilde{\cal O}_{p^z, \lambda_j}$ but $\tilde{\cal O}_{p^z, \lambda_j}$ is not a subset of $\tilde{\cal O}_{p^z, \lambda_i}.$ If the relation " \rightarrow " holds for all $\mathcal{G}_{p,\lambda}$ -orbits of $A_{p,\lambda}$, then we say that " \leftrightarrow " is a strict orbit cover of $A_{p,\lambda}$.
- It is easy to very that the relation " \hookrightarrow " on the set $\tilde{\mathcal{S}}_\lambda$ is a partial order. This implies that $\tilde{\mathcal{S}}_\lambda$ is a partially ordered set with respect to " \rightarrow ".

イロト イ伊 ト イヨ ト イヨ

 Ω

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

- Let $\mathcal{L}_{\lambda} = \{I_{\lambda} : \lambda \text{ is a partition}\}\$ be a collection of order ideals associated with automorphism orbit codes C_{λ} of S. Clearly, \mathcal{L}_{λ} is a lattice. The interesting relation between binary codes of \tilde{S} and order ideals in \mathcal{L}_{λ} is that \tilde{S} is isomorphic as a poset to $\mathcal{L}_\lambda.$ The map $\Phi:\tilde{\mathcal{S}}\longrightarrow\mathcal{L}_\lambda$ given by $\Phi(\,\tilde{C}_\lambda)=I_\lambda$ exhibits an isomorphism between these posets.
- For some $n \in \mathbb{Z}_{>0}$, let $Y(n) = \{\lambda : \lambda \vdash n\}$ be the set of all partitions of n . We relate two partitions $\mu = (\mu_1, \ldots, \mu_s), \lambda = (\lambda_1, \ldots, \lambda_r) \in Y(n)$ as, $\mu \leq \lambda$ if $\mu \subset \lambda$, that is, if μ is contained in λ . One can easily verify that the set $Y(n)$ for the relation " \leq " is a locally finite distributive lattice with the smallest unique element as 0, the empty set.

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

- \bullet Y(n) is called as Young's lattice or the lattice of Young diagrams, since to every partition of n there is a Young diagram associated to it. Denote the young diagram of λ by Y_{λ} .
- Notice that if $\mu \leq \lambda$, then for automorphism orbit codes $\tilde{\mathcal{C}}_\mu, \tilde{\mathcal{C}}_\lambda\in\tilde{\mathcal{S}},\ \tilde{c_\mu}_i\hookrightarrow\tilde{c_\lambda}_j$ holds for each i and $j,\,1\leq i\leq s$ and $1 < i < r$.
- The length of a codeword $\tilde{c_{\lambda_j}}$ is the number of bit strings in $\tilde{\mathsf{c}}_{\lambda_j}$. Note that in Y_λ there are λ_1 boxes in the top row of Y_{λ} , λ_2 boxes in the second last row from the top of Y_{λ} and so on.

イロト イ押 トイヨ トイヨト

 Ω

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

It follows that the length of $\tilde{c_{\lambda_j}}$ equals the number of boxes in the *j*-th row of Y_{λ} . Thus, there is a correspondence between partitions of n and codes of S . If $\tilde{\mathcal{S}}_n$ denotes the set of all automorphism orbit codes corresponding to all partitions of n , then $\tilde{\mathcal{S}}_n$ is an induced poset of $\tilde{\mathcal{S}}$. In particular, $\tilde{\mathcal{S}}_n$ is a locally finite distributive lattice, and each code in $\tilde{\mathcal{S}}_n$ can be identified as a Young diagram associated with a partition. The following statement holds.

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

Theorem 2: For some $\lambda \vdash n$, the bijection $\tilde{\mathcal{C}}_{\lambda} \longrightarrow \lambda$ is a poset isomorphism from \tilde{S}_n to Y(n).

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

 $\begin{array}{c} \leftarrow \quad \text{or} \quad \text{p} \end{array}$ - 4 伊 ト \equiv

Preparing a binary coding set up for future work on Numerical Semigroups, potentially in collaboration with Maria!!

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

 \equiv \rightarrow

 Ω

Acknowledgement

This research work is funded by the Department of Atomic Energy, Govt. of India under S.No. [02011/15/2023NBHM(R.P)/R&D II/5866].

Rameez Raja rameeznaqash@nitsri.ac.in Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

Muchas gracias por su atención!!

مية بين المستقل .
Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)

イロン イ押ン イヨン イヨン

 OQ

Ξ

References

Rameez Raja rameeznaqash@nitsri.ac.in

- 1 Mazumdar, E., Raja, R.: Group-annihilator graphs realised by finite abelian and its properties, Graphs and Combinatorics 38 25 (2022) 25pp.
- 2 Mesnager, S., Raja, R., S. A. Wagay: On the computation of Seidel Laplacian eigenvalues for graph-based binary codes. Discrete Math. 347 7 (2024).
- 3 Mesnager, S., Raja, R.: Orbit codes of finite Abelian groups and lattices. Discrete Math. 347 5 (2024).
- 4 Stanley, P. R.: Enumerative Combinatorics, vol. 1, Cambridge Stud. Adv. Math., vol. 49, Cambridge University Press, Cambridge,1997, with a foreword by Gian-Carlo Rota, corrected reprint of the 1986 original.
- 5 R. Raja and S. A. Wagay, Some invariants related to threshold and chain graphs, Adv. in Math. of Comms. doi: 10.3934/amc.2023020 (2023).

イロト イ押ト イヨト イヨト

 OQ

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India [Orbit codes and lattices](#page-0-0)