Orbit codes and lattices

Rameez Raja rameeznaqash@nitsri.ac.in

Department of Mathematics

National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India

"International Meeting on Numerical Semigroups" Universidad de Cádiz (Campus de Jerez), Spain July 08 - 12, 2024

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India Orbit codes and lattices

<ロト < 同ト < ヨト < ヨト

1 Partitions, orbits and binary codewords

- Passe diagram with points as binary bit strings
- 3 Automorphism orbit codes and lattice structure

JOINT WORK WITH Sihem Mesnager

Department of Mathematics, University of Paris VIII, F-93526
Saint-Denis, Laboratory Analysis, Geometry and Applications, LAGA, University Sorbonne Paris Nord, CNRS, UMR 7539,
F-93430, Villetaneuse, France and Telecom Paris, Polytechnic institute of Paris, 91120 Palaiseau, France

Sihem Mesnager, Rameez Raja, Orbit codes of finite Abelian groups and lattices. Discrete Math. 347 5 (2024).

Partitions, orbits and binary codewords

- Let λ = (λ₁, λ₂,..., λ_r) be a partition of of a positive integer n ∈ Z_{>0}, denoted by, λ ⊢ n, where λ₁,..., λ_r represents parts of the partition and λ₁ ≥ λ₂ ≥ ··· ≥ λ_r > 0
- To every partition of a positive integer, we can associate a finite abelian *p*-group of rank *r*, where *r* is the number of parts in the partition, that is, corresponding to a partition λ, a finite abelian *p*-group of rank *r* is given as,

$$A_{(\rho,\lambda)} = \mathbb{Z}/p^{\lambda_1}\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/p^{\lambda_r}\mathbb{Z}$$
(1)

• For distinct partitions and primes, a finite abelian group *G* is a direct sum of subgroups of type (1), that is,

$$\mathcal{G} = \bigoplus \mathcal{A}_{(p,\lambda)}$$

Consider a finite abelian *p*-group G_η = Z/p^ηZ of rank one which corresponds to some part η ∈ (λ₁,...,λ_r) of the partition λ. Under the group action Aut(G_η) × G_η → G_η, orbits O_{1,η}, O_{p,η},..., O_{p^η,η} of elements of G_η are represented by 1, p,..., p^η, where O_{pⁱ,η} = {pⁱa : (a, p) = 1}, 0 ≤ i ≤ η, (a, p) denotes the gcd of positive integers a and p.

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India Orbit codes and lattices

A (1) < (2) </p>

- We follow the next procedure to construct a binary codeword of the type $0^{t_1}1^{r_1}0^{t_2}1^{r_2}\dots 0^{t_h}1^{r_h}$ or $1^{t_1}0^{r_1}1^{t_2}0^{r_2}\dots 0^{t_h}1^{r_h}$ from \mathcal{G}_{η} called as *automorphism orbit codeword*. The powers t_i and r_i , $1 \leq i \leq h$, of 0 and 1 bit strings are determined by the structure of \mathcal{G}_{η} and the action $Aut(\mathcal{G}_{\eta}) \times \mathcal{G}_{\eta} \longrightarrow \mathcal{G}_{\eta}$.
 - If xy ≠ 0(mod p^η), then assign a bit 0 to all elements x and y of some orbit in the collection {O_{1,η}, O_{p,η},..., O_{p^η,η}} of orbits of elements of G_η.
 - If xy ≡ 0(mod p^η), then assign a bit 1 to all elements x and y of some orbit in the collection {O_{1,η}, O_{p,η},..., O_{p^η,η}} of orbits of elements of G_η.

イロト イボト イヨト イヨト

- Let φ denotes the Euler's totient function, and let a₁,..., a_{φ(p^η)} be positive integers which are relatively prime with p^η. The description of two cases we consider for the part η of λ is as follows.
- Case-I: If $\eta = 2k, k \in \mathbb{Z}_{>0}$, then orbits of the group action $Aut(\mathcal{G}_n) \times \mathcal{G}_n \longrightarrow \mathcal{G}_n$ are listed as follows, $\mathcal{O}_{1,n} = \{a_1,\ldots,a_{\phi(p^n)}\},\$ $\mathcal{O}_{p,n} = \{ pa_1, \dots, pa_{\phi(p^{\eta-1})} \},\$ $\mathcal{O}_{p^k,n} = \{p^k a_1, \ldots, p^k a_{\phi(p^{\eta-k})}\},\$ $\mathcal{O}_{p^{\eta-1},p} = \{p^{\eta-1}a_1, \ldots, p^{\eta-1}a_{\phi(p)}\},\$ $\mathcal{O}_{\mathbf{p}^{\eta} n} = \{\mathbf{p}^{\eta}\}.$

• A positive integer k is the minimum power of p such that $xy \equiv 0 \pmod{p^{\eta}}$ for all $x, y \in \mathcal{O}_{p^k, \eta}$. So we associate a bit string of 1's with the orbit $\mathcal{O}_{p^k,n}$. The power of the bit string is equal to the cardinality of $\mathcal{O}_{p^k,p}$, and this bit string represents an initial bit string of the intended binary codeword c_n which we construct from \mathcal{G}_n . Furthermore, k-1 is the maximum power of p such that for all $x, y \in \mathcal{O}_{p^{k-1}, n}$, $xy \not\equiv 0 \pmod{p^{\eta}}$. Consequently, we associate a string of 0's with the orbit $\mathcal{O}_{p^{k-1},n}$. Note that the power of this bit string is the cardinality of $\mathcal{O}_{p^{k-1},\eta}$, and it represents another part of c_n .

- Next, we attach a bit string of 1's. The 1's in a bit string correspond to elements of the orbit O_{p^{k+1},η}, and k + 1 is the minimum power of p such that for all x ∈ O_{p^{k-1},η} and y ∈ O_{p^{k+1},η}, xy ≡ 0(mod p^η).
- We alternate attaching bit strings of 1's and 0's to get the desired binary codeword c_{η} from \mathcal{G}_{η} . This process is exhausted when the sum of powers of bit strings is the order of the group \mathcal{G}_{η} . Thus for a group \mathcal{G}_{η} , the *automorphism orbit codeword* is given as,

$$1^{\phi(p^{k})}0^{\phi(p^{k-1})}1^{\phi(p^{k+1})}0^{\phi(p^{k-2})}\dots 0^{\phi(1)}1.$$
(2)

• The sum of powers of bit strings is,

$$p^{\eta} - p^{\eta-1} + p^{\eta-1} - p^{\eta-2} + \dots + 2 - 1 + 1 = p^{\eta} = |\mathcal{G}_{\eta}|.$$

- Case-II. $\eta = 2k 1$, $k \in \mathbb{Z}_{>0}$. We can list orbits of the group action $Aut(\mathcal{G}_{\eta}) \times \mathcal{G}_{\eta} \longrightarrow \mathcal{G}_{\eta}$ in the same manner as we did in case-I.
- However, in this case, we cannot begin the construction of c_{η} from a bit string of 1's, since from the structure of \mathcal{G}_{η} , k is the least integral power of p such that for all $x \in \mathcal{O}_{p^{k-1},\eta}$ and $y \in \mathcal{O}_{p^k,\eta}$ the relation $xy \equiv 0 \pmod{p^{\eta}}$ holds.

- Again as above, k − 1 is the maximum power of p such that for all x, y ∈ O_{p^{k-1},η}, xy ≠ 0(mod p^η). So the initial bit string of c_η consists of 0's, which correspond to elements of the orbit O_{p^{k-1},η}.
- The next bit string of 1's in c_{η} correspond to elements of the orbit $\mathcal{O}_{p^k,\eta}$. Continue the same process of adding alternate bit strings of 0's and 1's we obtain the automorphism orbit codeword c_{η} of \mathcal{G}_{η} given by,

$$0^{\phi(p^{k-1})}1^{\phi(p^k)}0^{\phi(p^{k-2})}\dots 0^{\phi(1)}1.$$
(3)

- As in Case-I, the sum of powers of bit strings is the order of G_η. Observe that there is one to one correspondence between orbits O_{1,η}, O_{p,η}, ..., O_{p^η,η} and bit strings (b_{1,η}), (b_{p,η}), ..., (b_{p^η,η}) of 0s and 1s. Therefore, the cardinality of any orbit equals the number of bits in the corresponding bit string of 0s or 1s.
- Fix some partition λ. Let c_η be an automorphism orbit codeword of some constituent of A_{p,λ}. Corresponding to some orbit O_{p^t,η}, there is bit string b_{p^t,η}, where 0 ≤ t ≤ η. Furthermore, let μ ≠ η be another part of λ. By b_{p^t,η} → b_{p^t,μ}, we mean b_{p^t,η} is a sub bit string of b_{p^t,μ}, 0 ≤ l ≤ μ. Equivalently, O_{p^t,η} → O_{p^t,μ} indicates that the correspondence between orbits O_{p^t,η} and O_{p^t,μ} is one to one and O_{p^t,η} ⊆ O_{p^t,μ}. If for each t and l, b_{p^t,η} → b_{p^t,μ}, then we write c_η → c_μ.

- Let \mathcal{H} be some group. Then a homomorphism $\varphi : \mathcal{G} \longrightarrow \mathcal{H}$, defines a codeword c_{φ} as a vector $c_{\varphi} = (\varphi(s_1), \varphi(s_2) \dots \varphi(s_k))$, where $\varphi(s_i)$ is the image of $s_i \in S$, $1 \le i \le k$, S is a fixed set of generators of \mathcal{G} .
- The set Hom(G, H) of all homomorphisms between groups G and H can be viewed as error-correcting codes. More specifically, a homomorphism code is defined as the set of all homomorphisms from G to H, denoted by, C = Hom(G, H).
- Note that the codeword c_φ of a homomorphism code
 C = Hom(G, H) is specified by the image of generators of a group G. In contrast, automorphism orbit codewords are based on elements of Hom(G, G), partitions and
 Aut(G)-orbits of the group action Aut(G) × G → G.

- So, automorphism orbit codewords are generalized homomorphism codewords which provides an interesting interplay of partitions, orbits of group action and binary codewords.
- In [1, 2, 5], the authors have discussed interesting generation of some graphs by binary generating codes of the type $0^{s_1}1^{r_1}0^{s_2}1^{r_2}\dots 0^{s_k}1^{r_k}$, where $s_i, r_i, 1 \le i \le k$, are some positive integers. They have determined some fascinating algebraic and combinatorial invariants from powers s_i and r_i of bits 0 and 1 involved in $0^{s_1}1^{r_1}0^{s_2}1^{r_2}\dots 0^{s_k}1^{r_k}$.

Hasse diagram with points as binary bit strings

- Now, we begin to establish a poset structure of automorphism orbit codewords.
- Let $|\mathcal{G}| = n$ and $|\mathcal{H}| = m$. Consider the group action $Aut(\mathcal{G}) \times \mathcal{G} \longrightarrow \mathcal{G}$. Let $\mathcal{O}_{g_1,n}, \mathcal{O}_{g_2,n}, \ldots, \mathcal{O}_{g_k,n}$ denotes the $Aut(\mathcal{G})$ -orbits, where $k \leq n$ and g_1, g_2, \ldots, g_k are representatives of these orbits.
- A homomorphism φ : G → H is said to be an orbit cover of G if for each i, 1 ≤ i ≤ k, φ(O_{gi,n}) ⊆ O_{φ(gi),m}, φ(g₁), φ(g₂),..., φ(g_k) are representatives of orbits of the action Aut(H) × H → H. Note that for some subset U ⊆ G, φ(U) = {φ(u) : u ∈ U}.

Here is our first result.

Proposition 1: Let \mathcal{G} and \mathcal{H} be two finite abelian *p*-groups of rank one such that $|\mathcal{G}| = p^{\eta}$ and $|\mathcal{H}| = p^{\mu}$. If $b_{p^{t},\eta}$ and $b_{p',\mu}$ represents bit strings of codewords c_{η} and c_{μ} , then \mathcal{G} admits an orbit cover (\hookrightarrow) if and only if $t \leq I$ and $\eta - t \geq \mu - I$.

• Denote by $S_{\mu} = \{(b_{p^{t},\mu}) : 0 \leq t \leq \mu\}$, a set of bit strings of a codeword associated with $\mathbb{Z}/p^{\mu}\mathbb{Z}$ and let $S = \bigsqcup_{\mu \in \mathbb{Z}_{>0}} S_{\mu}$ be the disjoint union over all $\mu \in \mathbb{Z}_{>0}$.

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India Orbit codes and lattices

(日) (三) (

• By **Proposition 1**, one can verify that the relation of "orbit cover" between bit strings of automorphism orbit codewords is reflexive and transitive in fact it is a partial order on set \mathcal{S} . Moreover, the relation "orbit cover" is independent of the parity of the power (part of a partition) of a prime discussed in equations (2) and (3). Below, we present a pictorial representation (poset realization) of \mathcal{S} with respect to the partial order "orbit cover". Nodes in some part of a poset is labelled by bit strings as shown in Figure 1.

Orbit codes and lattices

- A bit string (b_{1,0}) corresponds to the orbit O_{1,0} which consists of zero element only, that is, O_{1,0} is an orbit of the group action Aut(G) × G → G, where G = {0}.
- Thus given a partition λ, a binary code generated by automorphism orbit codewords (which we discuss in a subsequent section) can be derived through a particular construction process involving the poset S and orbits of the group action Aut(A_(p,λ)) × A_(p,λ) → A_(p,λ).

• The automorphism groups of r constituents $\mathbb{Z}/p^{\lambda_1}\mathbb{Z}, \mathbb{Z}/p^{\lambda_2}\mathbb{Z}, \dots, \mathbb{Z}/p^{\lambda_r}\mathbb{Z}$ of a finite abelian p-group $A_{p,\lambda}$ contributes to group actions,

$$\begin{array}{c} \operatorname{Aut}(\mathbb{Z}/p^{\lambda_1}\mathbb{Z})\times\mathbb{Z}/p^{\lambda_1}\mathbb{Z}\longrightarrow\\ \mathbb{Z}/p^{\lambda_1}\mathbb{Z},\ldots,\operatorname{Aut}(\mathbb{Z}/p^{\lambda_r}\mathbb{Z})\times\mathbb{Z}/p^{\lambda_r}\mathbb{Z}\longrightarrow\mathbb{Z}/p^{\lambda_r}\mathbb{Z}.\end{array}$$

• Consequently, there are orbits, and we consider the following product of the product of orbits,

$$\prod \left(\prod_{i=1}^{\lambda_1} \mathcal{O}_{\rho^i,\lambda_1} \prod_{i=1}^{\lambda_2} \mathcal{O}_{\rho^i,\lambda_2} \cdots \prod_{i=1}^{\lambda_r} \mathcal{O}_{\rho^i,\lambda_r}\right).$$
(4)

Automorphism orbit codes and lattice structure

- Given a partition, we define C_λ = (c_{λ1}, c_{λ2},..., c_{λr}), a code which we refer as an automorphism orbit code associated with A_(p,λ) (viewed as an induced subposet of S). C_λ is generated by automorphism orbit codewords c_{λi}, 1 ≤ i ≤ r, which in turn are generated by bit strings described in the preceding section.
- Variable length code (VLC) is called entropy coding (data compression), a technique where each event is assigned a codeword with a different number of bit strings. Observe that C_λ is a variable length code since a fixed number of source symbols (orbits) are encoded into a variable number of out symbols (bit strings).

- Notice that the codeword length in C_{λ} depends on the source symbol's property. A significant advantage of VLC is that it does not degrade the signal quality. Much literature is available where VLC has been studied for data compression and signal processing.
- From the structure of S, we immediately view an *ideal* I_{λ} of C_{λ} generated by some bit strings of codewords of C_{λ} , that is, I_{λ} as a code is generated by bit strings which correspond to elements of the product (4).

• In the following result, we make use of the partial order " \hookrightarrow " to establish a relation between order ideals I_{λ} and $I_{\lambda'}$ of S.

Theorem 1: For any two partitions λ and λ' , $A_{(p,\lambda)}$ admits an orbit cover if and only if $I_{\lambda'} \cup \mathcal{I} \subseteq I_{\lambda}$, where $\mathcal{I} \subset Hom(A_{(p,\lambda)}, A_{(p,\lambda')})$.

• It is known that there is a one-to-one correspondence between antichains and ideals, namely, the maximal elements of an ideal of a poset form an antichain and generate the ideal (see Section 3.1, [4]). Furthermore, we have the following observation.

Remark: For any partition λ , C_{λ} is an induced subset of S. If \mathfrak{I} denotes a code generated by bit strings of some automorphism orbit codes in S such that \mathfrak{I} is an ideal of S, then $\mathfrak{I} \cap C_{\lambda}$ is always an ideal of C_{λ} . Note that \mathfrak{I} is generated by bit strings corresponding to distinct automorphism orbit codewords of C_{λ} . Suppose \mathfrak{I} is generated by maximal bit strings of the code C_{λ} . Then by [4] (see Section 3.1), there is one-to-one correspondence between a code \mathfrak{I} and a code represented by $\mathfrak{I} \cap C_{\lambda}$.

• Now, it is natural to observe orbits of the group action $\mathcal{G}_{p,\lambda} \times A_{p,\lambda} \longrightarrow A_{p,\lambda}$, where $\mathcal{G}_{p,\lambda}$ is an automorphism group of $A_{p,\lambda}$. Note that $\mathcal{G}_{p,\lambda}$ acts on each of the r constituents of $A_{p,\lambda}$. So similar to (4) the orbits of the action are given as,

$$\prod \left(\prod_{i=1}^{\lambda_1} \tilde{\mathcal{O}}_{\rho^i,\lambda_1} \prod_{i=1}^{\lambda_2} \tilde{\mathcal{O}}_{\rho^i,\lambda_2} \cdots \prod_{i=1}^{\lambda_r} \tilde{\mathcal{O}}_{\rho^i,\lambda_r} \right).$$
(5)

- $\tilde{\mathcal{O}}_{p^z,\lambda_i}$, $1 \leq z \leq \lambda_i$, $1 \leq i \leq r$, are $\mathcal{G}_{p,\lambda}$ -orbits of the group action $\mathcal{G}_{p,\lambda} \times \mathcal{A}_{p,\lambda} \longrightarrow \mathcal{A}_{p,\lambda}$. Define a set $\tilde{\mathcal{S}}_{\lambda} = \{\tilde{b}_{p^z,\lambda_i} : 0 \leq z \leq \lambda_i, 1 \leq i \leq r\}$ to be the set of bit strings of automorphism orbit codewords $\tilde{c}_{\lambda_1}, \tilde{c}_{\lambda_2}, \ldots \tilde{c}_{\lambda_r}$
- Note that bit strings $\tilde{b}_{p^z,\lambda_i}$, $0 \le z \le \lambda_i$, $1 \le i \le r$, correspond to $\mathcal{G}_{p,\lambda}$ -orbits $\tilde{\mathcal{O}}_{p^z,\lambda_i}$ of r constituents of $A_{p,\lambda}$.

- For $\tilde{b}_{p^z,\lambda_i}, \tilde{b}_{p^z,\lambda_j} \in \tilde{S}_{\lambda}$ say $\tilde{b}_{p^z,\lambda_i} \hookrightarrow \tilde{b}_{p^z,\lambda_j}$ if $\tilde{b}_{p^z,\lambda_i}$ is strict substring of $\tilde{b}_{p^z,\lambda_j}$, that is, if $\tilde{b}_{p^z,\lambda_i}$ is a substring of $\tilde{b}_{p^z,\lambda_j}$ but $\tilde{b}_{p^z,\lambda_j}$ is not a substring of $\tilde{b}_{p^z,\lambda_i}$.
- Equivalently, $\tilde{\mathcal{O}}_{p^z,\lambda_i} \hookrightarrow \tilde{\mathcal{O}}_{p^z,\lambda_j}$ if $\tilde{\mathcal{O}}_{p^z,\lambda_i}$ is a subset of $\tilde{\mathcal{O}}_{p^z,\lambda_j}$ but $\tilde{\mathcal{O}}_{p^z,\lambda_j}$ is not a subset of $\tilde{\mathcal{O}}_{p^z,\lambda_i}$. If the relation " \hookrightarrow " holds for all $\mathcal{G}_{p,\lambda}$ -orbits of $A_{p,\lambda}$, then we say that " \hookrightarrow " is a *strict orbit cover* of $A_{p,\lambda}$.
- It is easy to very that the relation "→" on the set S_λ is a partial order. This implies that S_λ is a partially ordered set with respect to "→".

A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- Let L_λ = {l_λ : λ is a partition} be a collection of order ideals associated with automorphism orbit codes C_λ of S. Clearly, L_λ is a lattice. The interesting relation between binary codes of S̃ and order ideals in L_λ is that S̃ is isomorphic as a poset to L_λ. The map Φ : S̃ → L_λ given by Φ(C̃_λ) = l_λ exhibits an isomorphism between these posets.
- For some n ∈ Z_{>0}, let Y(n) = {λ : λ ⊢ n} be the set of all partitions of n. We relate two partitions μ = (μ₁,..., μ_s), λ = (λ₁,...λ_r) ∈ Y(n) as, μ ≤ λ if μ ⊂ λ, that is, if μ is contained in λ. One can easily verify that the set Y(n) for the relation "≤" is a locally finite distributive lattice with the smallest unique element as 0, the empty set.

- Y(n) is called as Young's lattice or the lattice of Young diagrams, since to every partition of n there is a Young diagram associated to it. Denote the young diagram of λ by Y_λ.
- Notice that if $\mu \leq \lambda$, then for automorphism orbit codes $\tilde{C}_{\mu}, \tilde{C}_{\lambda} \in \tilde{S}$, $\tilde{c}_{\mu_i} \hookrightarrow \tilde{c}_{\lambda_j}$ holds for each i and j, $1 \leq i \leq s$ and $1 \leq j \leq r$.
- The length of a codeword c_{λj} is the number of bit strings in c_{λj}. Note that in Y_λ there are λ₁ boxes in the top row of Y_λ, λ₂ boxes in the second last row from the top of Y_λ and so on.

4 ∰ ▶ 4 ∃ ▶ 4

It follows that the length of c_{λj} equals the number of boxes in the *j*-th row of Y_λ. Thus, there is a correspondence between partitions of *n* and codes of S̃. If S̃_n denotes the set of all automorphism orbit codes corresponding to all partitions of *n*, then S̃_n is an induced poset of S̃. In particular, S̃_n is a locally finite distributive lattice, and each code in S̃_n can be identified as a Young diagram associated with a partition. The following statement holds.

Theorem 2: For some $\lambda \vdash n$, the bijection $\tilde{\mathcal{C}}_{\lambda} \longrightarrow \lambda$ is a poset isomorphism from $\tilde{\mathcal{S}}_n$ to Y(n).

Preparing a binary coding set up for future work on Numerical Semigroups, potentially in collaboration with Maria!!

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India Orbit codes and lattices

< ∃ >

Acknowledgement

This research work is funded by the Department of Atomic Energy, Govt. of India under S.No. [02011/15/2023NBHM(R.P)/R&D II/5866].

Muchas gracias por su atención!!

Department of Mathematics National Institute of Technology Srinagar, Srinagar-190006, Jammu and Kashmir, India Orbit codes and lattices

イロト イボト イヨト イヨト

References

- Mazumdar, E., Raja, R.: Group-annihilator graphs realised by finite abelian and its properties, Graphs and Combinatorics 38 25 (2022) 25pp.
- Mesnager, S., Raja, R., S. A. Wagay: On the computation of Seidel Laplacian eigenvalues for graph-based binary codes. Discrete Math. 347 7 (2024).
- Mesnager, S., Raja, R.: Orbit codes of finite Abelian groups and lattices. Discrete Math. 347 5 (2024).
- Stanley, P. R.: Enumerative Combinatorics, vol. 1, Cambridge Stud. Adv. Math., vol. 49, Cambridge University Press, Cambridge,1997, with a foreword by Gian-Carlo Rota, corrected reprint of the 1986 original.
- R. Raja and S. A. Wagay, Some invariants related to threshold and chain graphs, Adv. in Math. of Comms. doi: 10.3934/amc.2023020 (2023).

イロト イボト イヨト イヨト