## QUASIGREEDY NUMERICAL SEMIGROUPS

## **Hebert Pérez-Rosés**

Joint work with Maria Bras-Amorós and José M. Serradilla-Merinero

Departament d'Enginyeria Informàtica i Matemàtiques Universitat Rovira i Virgili



#### 1 The change-making problem and greedy sets

#### 2 Generalization to numerical semigroups



Hebert Pérez-Rosés (URV)

프 ( ) ( ) ( )

#### 1 The change-making problem and greedy sets

2 Generalization to numerical semigroups



Hebert Pérez-Rosés (URV)

## The change-making problem

Given a set of coin denominations  $S = \{s_1 = 1, s_2, ..., s_t\}$ , with  $s_1 < ... < s_t$ , and a target amount k, the goal is to obtain k as a sum of coins, using as few coins as possible.

Mathematically, we are looking for a **payment vector**  $(a_1, \ldots, a_t)$ , such that

$$a_i \ge 0$$
, for all  $i = 1, ..., t$   
 $\sum_{i=1}^{t} a_i s_i = k$ ,  
 $\sum_{i=1}^{t} a_i$  is minimal.



< fi > <

## Greedy algorithm

The **greedy algorithm** for making change proceeds by always choosing in the first place the coin of the largest possible denomination.

#### Algorithm 1: GREEDY PAYMENT METHOD

- **Input** : The set of denominations  $S = 1, s_2, ..., s_t$ , with  $1 < s_2 < ... < s_t$ , and a quantity  $k \ge 0$ . **Output:** Payment vector  $(a_1, a_2, ..., a_t)$ .
- 1 for i := t downto 1 do
- $\mathbf{2} \quad | \quad a_i := k \text{ div } s_i;$
- $s \quad k := k \mod s_i;$
- 4 end

## Greedy algorithm (Cont)

#### Definition

For a given set of denominations  $S = 1, s_2, ..., s_t$ , the greedy payment vector is the payment vector  $(a_1, a_2, ..., a_t)$  produced by Algorithm 1, and GREEDYCOST<sub>S</sub> $(k) = \sum_{i=1}^{t} a_i$ .

**Bad news**: The greedy payment vector is not necessarily optimal (i.e.  $GREEDYCOST_S(k)$  is not always the minimum cost among all possible payment vectors)

**But**: But there do exist some sets of denominations *S* for which we can guarantee that the greedy payment vector is indeed optimal.





#### Example 1:

- Let  $S_1 = \{1, 4, 6\}$  and  $S_2 = \{1, 2, 5\}$  be two sets of denominations
- GREEDYCOST<sub> $S_1$ </sub>(8) = 3 (not optimal)
- We can find a representation of 8 with two coins
- GREEDYCOST<sub> $S_2$ </sub>(8) = 3 (optimal)



## Greedy sets (definition)

#### Definition (Greedy sets)

If a set S of denominations *always* produces an optimal greedy payment vector for *any* given amount k, then S is called *orderly*, *canonical*, or *greedy*.

A set *S* consisting of **one** or **two** denominations is always greedy. For sets of cardinal 3 we have the following characterization:

Proposition (Adamaszek & Adamaszek, 2010)

The set  $S = \{1, a, b\}$  (with a < b) is greedy if, and only if, b - a belongs to the set

$$\mathfrak{D}(a) = \{a - 1, a\} \cup \{2a - 2, 2a - 1, 2a\} \cup \dots \{ma - m, \dots ma\} \cup \dots = \\ = \bigcup_{m=1}^{\infty} \bigcup_{s=0}^{m} \{ma - s\}$$

## One-point theorem

The most powerful necessary and sufficient condition is given by the so-called **one-point theorem** (Theorem 2.1 in [Adamaszek & Adamaszek, 2010]):

#### Theorem

Suppose that  $S = \{1, s_2, ..., s_t\}$  is a greedy set of denominations, and  $s_{t+1} > s_t$ . Now let  $m = \left\lceil \frac{s_{t+1}}{s_t} \right\rceil$ . Then  $\hat{S} = \{1, s_2, ..., s_t, s_{t+1}\}$  is greedy if, and only if, GREEDYCOST<sub>S</sub>( $ms_t - s_{t+1}$ ) < m.

Notice that

$$(m-1)s_t+1 \leq s_{t+1} \leq ms_t$$

by the definition of m



< ロ > < 団 > < 団 > < 団 > < 団 >

## Application to greedy routing

**Greedy routing** consists of always forwarding the message packet to the neighbour node that minimizes the distance to the target node, for some distance function defined on the nodes of the network.

- Makes sense in geographically embedded networks, and also in circulant networks.
- Does not always result in the shortest route to the target node, but in some networks it does.



## Circulant graphs and digraphs

#### Definition

A circulant graph (or digraph) C(n; S) is a **Cayley graph** on the cyclic group  $\mathbb{Z}_n$ , with connection set  $S = \{s_1, \ldots, s_t\}$ .

I.e., every vertex *i* is connected by an arc to the vertices  $i + s_1, i + s_2, \dots, i + s_t$ , where addition is performed modulo *n*.

Circulant graphs are **vertex-transitive**, so the problem of finding a route (optimal or not) from vertex *i* to vertex *j*, can be reduced to the problem of finding a route from vertex 0 to vertex *k*, where *k* is either i - j or j - i.

The change-making problem and greedy sets

## Example: Circulant graph on $\mathbb{Z}_8$



Figure: C(8; ±1, ±3)



< ロ > < 同 > < 回 > < 回 >

Hebert Pérez-Rosés (URV)

#### 1 The change-making problem and greedy sets

#### 2 Generalization to numerical semigroups



Hebert Pérez-Rosés (URV)

## Quasi-greedy algorithm

#### Algorithm 2: QUASI-GREEDY REPRESENTATION METHOD

- **Input** : The set of denominations  $S = \{s_1, s_2, ..., s_t\}$ , with  $1 \le s_1 < s_2 < ... < s_t$ ,  $gcd(s_1, s_2, ..., s_t) = 1$ , and an element  $k \in \langle S \rangle$ , k > 0.
- **Output:** Quasi-greedy representation vector  $\mathbf{a} = (a_1, a_2, \dots, a_t)$ . (factorization)
- 1 for i := t downto 1 do
- 2 Let q be the largest integer such that  $k = qs_i + r$  and  $r \in \langle S \rangle$ ;
- $a_i := q;$
- 4 k := r;
- 5 if k = 0 then
- 6 | **return** *a*;
- 7 end
- 8 end



## Quasi-greedy representation

#### Definition (Quasi-greedy representation and quasi-greedy cost)

For a given set of denominations  $S = \{s_1, s_2, \ldots, s_t\}$ , with  $1 < s_2 < \ldots < s_t$  and  $gcd(s_1, s_2, \ldots, s_t) = 1$ , and a given  $k \in \langle S \rangle, k > 0$ , the *quasi-greedy representation* of k with respect to S, denoted QGREEDYREP<sub>S</sub>(k), is the payment vector  $\mathbf{a} = (a_1, a_2, \ldots, a_t)$  produced by Algorithm 2, and QGREEDYCOST<sub>S</sub>(k) =  $\sum_{i=1}^{t} a_i$ .

All representable numbers  $k \in \langle S \rangle$ , k > 0, have a quasi-greedy representation. In other words, Algorithm 2 always terminates and produces a factorization of k.



## Quasi-greedy set

Again, the quasi-greedy representation of k is not necessarily the best or the most efficient representation of k. However, for some specific sets S the quasi-greedy representation is indeed minimal for any representable k, which leads us to the following:

#### Definition (Quasi-greedy set)

Let  $S = \{s_1, s_2, ..., s_t\}$  be a set of generators with  $1 < s_1 < s_2 < ... < s_t$  and  $gcd(s_1, s_2, ..., s_t) = 1$ , such that Algorithm 2 *always* produces an optimal representation for *any* given  $k \in \langle S \rangle$ . Then *S* will be called *quasi-greedy*, and the semigroup  $\mathbb{S} = \langle S \rangle$  will also be called *quasi-greedy*.



## Example

As before, sets of cardinality **two** are quasi-greedy, but that is not necessarily the case for sets of cardinality three or greater.

#### Example 2:

■ Let  $S_1 = \{3, 7, 10\}$  and  $S_2 = \{3, 7, 11\}$  be two sets of 'denominations'

• 
$$f(S_1) = 11$$
 and  $f(S_2) = 8$ 

- QGREEDYCOST<sub>S1</sub>(28) = 7 (not optimal)
- We can find a representation of 28 with four 'coins'
- QGREEDYCOST $_{S_2}(28) = 4$  (optimal)
- Every integer larger than 8 has an optimal quasi-greedy representation in S<sub>2</sub> (we will see that later)



## Counterexamples and critical range

If *S* is **not** quasi-greedy, then there must exist some *k* such that  $MINCOST_S(k) < QGREEDYCOST_S(k)$ . Such a number *k* is called a **counterexample**. The smallest counterexample must lie in some finite interval, the **critical range**.

#### Theorem

Let  $S = \{s_1, s_2, ..., s_t\}$ , with  $1 < s_1 < s_2 < \cdots < s_t$  and  $gcd(s_1, ..., s_t) = 1$ , so that  $\mathbb{S} = \langle S \rangle$  is a numerical semigroup generated by S. If there exists a counterexample  $k \in \mathbb{S}$  such that  $MINCOST_S(k) < QGREEDYCOST_S(k)$ , then the smallest such k lies in the range

$$s_3+s_1+2\leq k\leq f(\mathbb{S})+s_t+s_{t-1}.$$

• □ ▶ • □ ▶ • □ ▶

## Example

#### Example 3:

- Let  $S = \{5, 9, 14\}$
- *f*(S) = 31
- The critical range is [50; 54]
- The number 54 is a counterexample. Let's check:
  - QGREEDYCOST<sub>S</sub>(54) = 9
  - QGREEDYREP<sub>S</sub>(54) =  $1 \cdot 14 + 8 \cdot 5$
  - $MINCOST_S(54) = 6$
  - $MINREP_S(54) = 6 \cdot 9$



## Witnesses

- Previous theorem is starting point for the algorithmic identification of quasi-greedy sets
- Look for a counterexample in the critical range, and if we cannot find one, then we can conclude that the given set S is quasi-greedy
- Implies calculating the minimal representation of all k in the critical range, which may be a costly process

#### Definition

Given a set of generators  $S = \{s_1, s_2, ..., s_t\}$ , with  $1 < s_1 < s_2 < ... < s_t$  and  $gcd(s_1, s_2, ..., s_t) = 1$ , a *witness* for *S* is any representable integer k > 0, such that QGREEDYCOST<sub>S</sub>(k) > QGREEDYCOST<sub>S</sub>(k - s<sub>i</sub>) + 1 for some generator  $s_i < k$ .

## Witnesses

#### Lemma

As in Definition 8, let  $S = \{s_1, ..., s_t\}$  be a set of generators with  $1 < s_2 < ... < s_t$  and  $gcd(s_1, ..., s_t) = 1$ . Then

Every witness for *S* is a counterexample.

The smallest counterexample (if it exists) is also a witness.

#### Theorem

As in Definition 8 let  $S = \{s_1, ..., s_t\}$  be a set of generators with  $1 < s_1 < s_2 < ... < s_t$  and  $gcd(s_1, ..., s_t) = 1$ . Then, S is quasi-greedy if, and only if, S does not have any witness k in the interval

$$s_3 + s_1 + 2 \le k \le f(S) + s_t + s_{t-1}$$
.

U N I V E R S I T A T ROVIRA I VIRGILI

## Deciding if a set is quasi-greedy

Algorithm 3: DETERMINE WHETHER A SEMIGROUP DEFINED BY SET OF GENERATORS IS QUASI-GREEDY

```
Input : The set of denominations S = \{s_1, s_2, \ldots, s_t\}, with
             1 < s_1 < s_2 < \ldots < s_t, \gcd(s_1, s_2, \ldots, s_t) = 1.
  Output: TRUE if \langle S \rangle is guasi-greedy, and FALSE otherwise.
1 \mathbb{S} := \langle S \rangle;
2 for k := s_3 + s_1 + 2 to f(\mathbb{S}) + s_t + s_{t-1} do
      t' := Smallest j such that k < s_i;
3
    for i = 1 to t' do
4
           if QGREEDYCOST<sub>S</sub>(k) > QGREEDYCOST<sub>S</sub>(k - s_i) + 1 then
5
               return FALSE;
6
          end
7
      end
8
9 end
o return TRUE :
```



#### More examples

Example 4:

- Let's go back to *S* = {5,9,14}
- Recall that f(S) = 31 and the critical range is [50; 54]

Let us check that 54 is a witness:

■ QGREEDYCOST<sub>S</sub>(54) = 9

• QGREEDYCOST<sub>S</sub>(54 - 9) =QGREEDYCOST<sub>S</sub>(45) = 5

Example 5:

- Let's go back to  $S = \{3, 7, 11\}$
- Recall that f(S) = 8 and the critical range is [16; 26]
- There is no witness in the critical range, therefore, S is quasi-greedy



- 4 同 ト 4 ヨ ト 4 ヨ ト

## **Final remarks**

- Quasi-greedy semigroups with three generators are relatively abundant: We have sampled 90 semigroups with three generators between 2 and 15, and out of these, only 25 of them were *not* quasi-greedy.
- We have found a **family** of quasi-greedy semigroups with **three** generators, namely the semigroups generated by three consecutive integers: *n*, *n* + 1 and *n* + 2.
- Other families of quasi-greedy semigroups with three generators need to be identified.
- We know nothing about four generators.

## Bibliographic references - Change making problem

- Adamaszek, A. and M. Adamaszek: Combinatorics of the change-making problem. *European Journal of Combinatorics* **31**, 47–63 (2010).
- 2 Cowen, L.J., R. Cowen and A. Steinberg: Totally Greedy Coin Sets and Greedy Obstructions. *The Electronic Journal of Combinatorics* **15** (2008), R90.
- 3 Kozen, D. and S. Zaks: Optimal bounds for the change-making problem. *Theoretical Computer Science* 123, 377–388 (1994).
- 4 Shallit, J.: What This Country Needs is an 18¢ Piece. The Mathematical Intelligencer 25(2), 20–23 (2003).



< D > < A > < B >

# Bibliographic references - Circulant graphs and digraphs

- Pérez-Rosés, H., M. Bras and J.M. Serradilla-Merinero: Greedy routing in circulant networks. *Graphs and Combinatorics* 38 (2022). DOI: https://doi.org/10.1007/s00373-022-02489-9
- 2 Hwang, F.K.: A survey on multi-loop networks. *Theoretical Computer Science* **299**, 107–121 (2003).
- Wong, C.K. and D. Coppersmith: A combinatorial problem related to multimodule memory organizations. *Journal of the ACM* 21, 392–402 (1974).

