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The change-making problem and greedy sets

The change-making problem

Given a set of coin denominations S = {s1 = 1, s2, . . . , st}, with
s1 < . . . < st , and a target amount k , the goal is to obtain k as a sum
of coins, using as few coins as possible.

Mathematically, we are looking for a payment vector (a1, . . . ,at), such
that

ai ≥ 0, for all i = 1, . . . , t
t∑

i=1

aisi = k ,

t∑
i=1

ai is minimal.
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The change-making problem and greedy sets

Greedy algorithm

The greedy algorithm for making change proceeds by always
choosing in the first place the coin of the largest possible
denomination.

Algorithm 1: GREEDY PAYMENT METHOD

Input : The set of denominations S = 1, s2, . . . , st , with
1 < s2 < . . . < st , and a quantity k ≥ 0.

Output: Payment vector (a1,a2, . . . ,at).

1 for i := t downto 1 do
2 ai := k div si ;
3 k := k mod si ;
4 end
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The change-making problem and greedy sets

Greedy algorithm (Cont)

Definition

For a given set of denominations S = 1, s2, . . . , st , the greedy payment
vector is the payment vector (a1,a2, . . . ,at) produced by Algorithm 1,
and GREEDYCOSTS(k) =

∑t
i=1 ai .

Bad news: The greedy payment vector is not necessarily optimal (i.e.
GREEDYCOSTS(k) is not always the minimum cost among all possible
payment vectors)

But: But there do exist some sets of denominations S for which we
can guarantee that the greedy payment vector is indeed optimal.
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The change-making problem and greedy sets

Example

Example 1:
Let S1 = {1,4,6} and S2 = {1,2,5} be two sets of denominations

GREEDYCOSTS1(8) = 3 (not optimal)

We can find a representation of 8 with two coins

GREEDYCOSTS2(8) = 3 (optimal)
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The change-making problem and greedy sets

Greedy sets (definition)

Definition (Greedy sets)
If a set S of denominations always produces an optimal greedy
payment vector for any given amount k , then S is called orderly,
canonical, or greedy.

A set S consisting of one or two denominations is always greedy. For
sets of cardinal 3 we have the following characterization:

Proposition (Adamaszek & Adamaszek, 2010)

The set S = {1,a,b} (with a < b) is greedy if, and only if, b − a
belongs to the set

D(a) = {a − 1,a} ∪ {2a − 2,2a − 1,2a} ∪ . . . {ma − m, . . .ma} ∪ . . . =

=
∞⋃

m=1

m⋃
s=0

{ma − s}

Hebert Pérez-Rosés (URV) Quasigreedy numerical semigroups 8 / 26



The change-making problem and greedy sets

One-point theorem

The most powerful necessary and sufficient condition is given by the
so-called one-point theorem (Theorem 2.1 in [Adamaszek &
Adamaszek, 2010]):

Theorem
Suppose that S = {1, s2, . . . , st} is a greedy set of denominations, and

st+1 > st . Now let m =

⌈
st+1

st

⌉
. Then Ŝ = {1, s2, . . . , st , st+1} is

greedy if, and only if, GREEDYCOSTS(mst − st+1) < m.

Notice that
(m − 1)st + 1 ≤ st+1 ≤ mst ,

by the definition of m
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The change-making problem and greedy sets

Application to greedy routing

Greedy routing consists of always forwarding the message packet to
the neighbour node that minimizes the distance to the target node, for
some distance function defined on the nodes of the network.

Makes sense in geographically embedded networks, and also
in circulant networks.

Does not always result in the shortest route to the target node, but
in some networks it does.
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The change-making problem and greedy sets

Circulant graphs and digraphs

Definition
A circulant graph (or digraph) C(n;S) is a Cayley graph on the cyclic
group Zn, with connection set S = {s1, . . . , st}.

I.e., every vertex i is connected by an arc to the vertices
i + s1, i + s2, . . . , i + st , where addition is performed modulo n.

Circulant graphs are vertex-transitive, so the problem of finding a
route (optimal or not) from vertex i to vertex j , can be reduced to the
problem of finding a route from vertex 0 to vertex k , where k is either
i − j or j − i .
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The change-making problem and greedy sets

Example: Circulant graph on Z8

Figure: C(8;±1,±3)
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Generalization to numerical semigroups

Quasi-greedy algorithm

Algorithm 2: QUASI-GREEDY REPRESENTATION METHOD

Input : The set of denominations S = {s1, s2, . . . , st}, with
1 ≤ s1 < s2 < . . . < st , gcd(s1, s2, . . . , st) = 1, and an
element k ∈ ⟨S⟩, k > 0.

Output: Quasi-greedy representation vector a = (a1,a2, . . . ,at).
(factorization)

1 for i := t downto 1 do
2 Let q be the largest integer such that k = qsi + r and r ∈ ⟨S⟩ ;
3 ai := q;
4 k := r ;
5 if k = 0 then
6 return a;
7 end
8 end
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Generalization to numerical semigroups

Quasi-greedy representation

Definition (Quasi-greedy representation and quasi-greedy cost)

For a given set of denominations S = {s1, s2, . . . , st}, with
1 < s2 < . . . < st and gcd(s1, s2, . . . , st) = 1, and a given
k ∈ ⟨S⟩, k > 0, the quasi-greedy representation of k with respect to S,
denoted QGREEDYREPS(k), is the payment vector a = (a1,a2, . . . ,at)
produced by Algorithm 2, and QGREEDYCOSTS(k) =

∑t
i=1 ai .

All representable numbers k ∈ ⟨S⟩, k > 0, have a quasi-greedy
representation. In other words, Algorithm 2 always terminates and
produces a factorization of k .
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Generalization to numerical semigroups

Quasi-greedy set

Again, the quasi-greedy representation of k is not necessarily the best
or the most efficient representation of k . However, for some specific
sets S the quasi-greedy representation is indeed minimal for any
representable k , which leads us to the following:

Definition (Quasi-greedy set)

Let S = {s1, s2, . . . , st} be a set of generators with
1 < s1 < s2 < . . . < st and gcd(s1, s2, . . . , st) = 1, such that Algorithm
2 always produces an optimal representation for any given k ∈ ⟨S⟩.
Then S will be called quasi-greedy, and the semigroup S = ⟨S⟩ will
also be called quasi-greedy.
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Generalization to numerical semigroups

Example

As before, sets of cardinality two are quasi-greedy, but that is not
necessarily the case for sets of cardinality three or greater.

Example 2:
Let S1 = {3,7,10} and S2 = {3,7,11} be two sets of
‘denominations’

f (S1) = 11 and f (S2) = 8

QGREEDYCOSTS1(28) = 7 (not optimal)

We can find a representation of 28 with four ‘coins’

QGREEDYCOSTS2(28) = 4 (optimal)

Every integer larger than 8 has an optimal quasi-greedy
representation in S2 (we will see that later)
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Generalization to numerical semigroups

Counterexamples and critical range

If S is not quasi-greedy, then there must exist some k such that
MINCOSTS(k) < QGREEDYCOSTS(k). Such a number k is called a
counterexample. The smallest counterexample must lie in some finite
interval, the critical range.

Theorem

Let S = {s1, s2, . . . , st}, with 1 < s1 < s2 < · · · < st and
gcd(s1, . . . , st) = 1, so that S = ⟨S⟩ is a numerical semigroup
generated by S. If there exists a counterexample k ∈ S such that
MINCOSTS(k) < QGREEDYCOSTS(k), then the smallest such k lies in
the range

s3 + s1 + 2 ≤ k ≤ f (S) + st + st−1. (1)
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Generalization to numerical semigroups

Example

Example 3:
Let S = {5,9,14}

f (S) = 31

The critical range is [50;54]

The number 54 is a counterexample. Let’s check:
QGREEDYCOSTS(54) = 9
QGREEDYREPS(54) = 1 · 14 + 8 · 5
MINCOSTS(54) = 6
MINREPS(54) = 6 · 9
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Generalization to numerical semigroups

Witnesses

Previous theorem is starting point for the algorithmic identification
of quasi-greedy sets
Look for a counterexample in the critical range, and if we cannot
find one, then we can conclude that the given set S is
quasi-greedy
Implies calculating the minimal representation of all k in the critical
range, which may be a costly process

Definition

Given a set of generators S = {s1, s2, . . . , st}, with
1 < s1 < s2 < . . . < st and gcd(s1, s2, . . . , st) = 1, a witness for S is
any representable integer k > 0, such that
QGREEDYCOSTS(k) > QGREEDYCOSTS(k − si) + 1 for some
generator si < k .
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Generalization to numerical semigroups

Witnesses

Lemma

As in Definition 8, let S = {s1, . . . , st} be a set of generators with
1 < s2 < . . . < st and gcd(s1, . . . , st) = 1. Then

Every witness for S is a counterexample.
The smallest counterexample (if it exists) is also a witness.

Theorem

As in Definition 8 let S = {s1, . . . , st} be a set of generators with
1 < s1 < s2 < . . . < st and gcd(s1, . . . , st) = 1. Then, S is quasi-greedy
if, and only if, S does not have any witness k in the interval

s3 + s1 + 2 ≤ k ≤ f (S) + st + st−1.
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Generalization to numerical semigroups

Deciding if a set is quasi-greedy
Algorithm 3: DETERMINE WHETHER A SEMIGROUP DEFINED
BY SET OF GENERATORS IS QUASI-GREEDY

Input : The set of denominations S = {s1, s2, . . . , st}, with
1 < s1 < s2 < . . . < st , gcd(s1, s2, . . . , st) = 1.

Output: TRUE if ⟨S⟩ is quasi-greedy, and FALSE otherwise.

1 S := ⟨S⟩;
2 for k:= s3 + s1 + 2 to f (S) + st + st−1 do
3 t ′ := Smallest j such that k < sj ;
4 for i := 1 to t ′ do
5 if QGREEDYCOSTS(k) > QGREEDYCOSTS(k − si) + 1 then
6 return FALSE ;
7 end
8 end
9 end

10 return TRUE ;
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Generalization to numerical semigroups

More examples

Example 4:
Let’s go back to S = {5,9,14}

Recall that f (S) = 31 and the critical range is [50;54]

Let us check that 54 is a witness:

QGREEDYCOSTS(54) = 9
QGREEDYCOSTS(54 − 9) = QGREEDYCOSTS(45) = 5

Example 5:
Let’s go back to S = {3,7,11}

Recall that f (S) = 8 and the critical range is [16;26]

There is no witness in the critical range, therefore, S is
quasi-greedy
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Generalization to numerical semigroups

Final remarks

Quasi-greedy semigroups with three generators are relatively
abundant: We have sampled 90 semigroups with three generators
between 2 and 15, and out of these, only 25 of them were not
quasi-greedy.

We have found a family of quasi-greedy semigroups with three
generators, namely the semigroups generated by three
consecutive integers: n, n + 1 and n + 2.

Other families of quasi-greedy semigroups with three generators
need to be identified.

We know nothing about four generators.
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Generalization to numerical semigroups
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Generalization to numerical semigroups
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