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Introduction

A numerical semigroup S is a subset of N closed under addition of
natural numbers, containing {0} and such that N\ S has finite cardinality.

Let S # N be a numerical semigroup.

The Frobenius number of S, denoted by F(S), is the maximum of
N\ S. The multiplicity of S, m(S), is the minimum of S\ {0}.

The numerical semigroup S has a unique minimal system of generators,
denoted msg(S); its cardinality is the so-called embedding dimension of
S, denoted by e(S).

Roughly speaking, the Frobenius problem is to find formulas of F(S) in
terms of msg(S).



Introduction

Let T be a numerical semigroup. Given d € N\ {0}, we write

T

g:{xeN|dxe T}
which is also a numerical semigroup called the quotient of T by d.
Definition

Let S and T be numerical semigroups and d € N\ {0}. We say that T is
a d—multiple of S if L =S.

Correspondingly, given two numerical semigroups S and T, we say that
T is a multiple of S if there exists d € N'\ {0} such that T = S.



Introduction

Proposition
Let S and T be two numerical semigroups and d € N\ {0}. Then T is
d—multiple of S, that is,

T
g::{X€N|dx€ T}=S5,

if and only if
d(N\S)CN\TCN\dS.

Specifically, in this case, F(T) > d F(S).



(Mostly open) Problems

’ Let S # N be a numerical semigroup and d € N\ {0}. ‘

» Compute (if possible) all d—multiples of S.
» Solve the Frobenius problem for d—multiples of S in terms of F(S).

» Determine if a given numerical semigroup has a multiple with
embedding dimension greater than or equal to three.

» Determine
min{e(T) | T is a multiple of S}

for a given numerical semigroup S.
This number is called quotient rank of S.

The quotient rank of S is bounded above by ¢(5), since S/1 =S. Then,
S is said to have full quotient rank when the quotient rank of S is equal
to e(S).



Computation of all d—multiples of S

We write My(S) for the set of all numerical semigroups d—multiples of
S, that is,

My(S) = {T is a numerical semigroup | d (N\S)C N\ T CN\dS}.

It is known [Rosales+Garcia-Sanchez (2008), Swanson (2009)] that there
are infinitely many elements in the set My(S).

We write max My(S) for the set of maximal elements of M4(S) with
respect to inclusion.

Proposition

» The set maxMy(S) is never empty.
> If T € maxMy(S) then F(T) = d F(S).
In particular, max My(S) has finite cardinality.



Example: F(T) = dF(S) & T € maxMy(S)

Let S=(3,4,5) and d =3. If T =(4,7,9,10) and T' = (4,5,7), then
one can see that T C T', that

and that
F(T)=F(T')=3F(S) =6.

Therefore, T & maxMy(S) although has the minimum possible Frobenius
number among the elements of My(S).

Moreover, one can easily check?! that
maxMy(S) = {(4,5,7)}

because (4,5,7) is the only irreducible numerical semigroup with
Frobenius number equal to 6.

LGAP Package NumericalSgps: https://gap-packages.github.io/numericalsgps/


https://gap-packages.github.io/numericalsgps/

Recall that a numerical semigroup with Frobenius number F is
irreducible if and only if it is maximal in the set of all numerical
semigroups with Frobenius number F.

Proposition
S is irreducible if and only if every T € maxMy(S) is irreducible.

Since maxMy(S) is a subset of the set of (irreducible, if S is) numerical
semigroups with Frobenius number d F(S), we can naively compute
max Mgy(S).



Computation of all d—multiples of S (cont.)

Theorem
There exists an explicit surjective map

02 : My(S) — maxMy(S); T +— 0%(T)

Therefore, to compute My4(S), it is “enough” to know what the fibers of
¢ are like.

Proposition

Given R € maxMy(S), the set (©2)~1(R) can be arranged (by inclusion)
as a rooted three G(R) with root R.



The set of children of T € G(R) - Case 1.

Proposition
Let T € My(S) and R = ©4(T). IfF(T) = dF(S), then the set of
children of T in G(R) is equal to the union of

{(T\{x} CN|xemsg(T),x¢dS and x > F(T)}
and
{T\{x} CN|xemsg(T),x¢dS, x<F(T)and x = ()},
where
(+) = max{ze (x}UN\T)|2z€ T\ {x},z& d(N\S)

andz—y & T\ {x}, foreveryy € T\{X}}



The set of children of T € G(R) - Case 2.

Proposition
Let T € My(S) and R = ©4(T). IfF(T) > dF(S), then the set of
children of T in G(R) is equal to

{T\{x} CN|xemsg(T),x¢dS and x> F(T)}.

In particular, if F(T) # d F(S) and x < F(T) for every x € msg(T), then
T is a leaf of G(R).



Example
Let S = (3,4,5) and d = 3. In this case, maxMy(S) = {(4,5,7)} and

the rooted tree grows as depicted below:

(4,5,7)
//ﬂ \\\\‘\x
(5,7,8,9,11) (4,7,9,10) (4,5,11
< - N |
ST~ \\\\ !
\\\\:\\\\\\\\\ \\ \\\\ 3
\‘A \\\ AN N \\\ v
(7,...,13) : (4,5)

(*) Continuous arrows connect those numerical semigroups in My(S) with

minimum possible Frobenius number.



My (S)—system of generators

Proposition

T € My(S) if and only if there exists a finite subset X of S such that
> (X)yNd(N\S)=g,
> gcd(XU{d}) =1,
> T=(X)+dS.

In this case, if there is not proper subset of X with that property, we say
that X a is minimal My(S)—system of generators of T.

Theorem
If T € My(S), then msg(T) N (N\ dmsg(S)) is the (unique) minimal
My (S)—system of generators of T.

The My4(S)—embedding dimension of T € My(S) is the cardinality of
its minimal My(S)—system of generators of T.



My (S)—embedding dimension one

Proposition
A subset T of N is a d—multiple of S with My(S)—embedding dimension
one if and only if there exists x € S with gcd(x, d) = 1 such that

T=(x)+dS.
In this case, x = min(T \ dS).

Recall that a numerical semigroup T is a gluing of T; and T, if
T =ATy+ uT, for some A € T; \ msg(T1) and p € Ty \ msg(T2) with
ged(\, 1) = 1.

Corollary
A subset T of N is a d—multiple of S with My4(S)—embedding dimension
one with min(T \ dS) & msg(S) if and only if T is a gluing of N and S.



My(S)—embedding dimension one (cont.)

Proposition (Frobenius problem)
If T is a d—multiple of S with M4(S)—embedding dimension one, then

F(T)=(d—1)min(T \ dS) + d F(S).

—_—— o ee———————

Formulas for the genus, pseudo-Frobenius numbers are also obtained.



Full quotient rank
Recall that S has full quotient rank if

min{e(T) | T is a multiple of S} = ¢(S).

Proposition
If msg(S) = {a1,...,a.} and

e
Zaj—a; ¢S foreveryi€{l,... e},
j=1
J#i
then S has full quotient rank.

Corollary (Numerical semigroups having unique Betti element)

If c1,...,ce are relatively prime integers greater than one and

msg(S) = H Glie{l,...,e}p,

J=Lj#

then S has full quotient rank.



Full quotient rank
Recall that S has full quotient rank if

min{e(T) | T is a multiple of S} = ¢(S).

Proposition
If msg(S) = {a1,...,a.} and

e
Zaj—a; ¢S foreveryi€{l,... e},
j=1
J#i
then S has full quotient rank.

Open question. Is the above condition necessary?

Proposition

Ifmsg(S)={a1 <...<ac}and > j1a;—a; ¢S for every
J#i

i€{l,...,e}, then
a 22671.
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Thanks for your attention!



