The multiples of a numerical semigroup Joint work with **J.C. Rosales** (Universidad de Granada, Spain) <https://arxiv.org/abs/2402.04413>

Partially supported project PID2022-138906NB-C21 funded by

Introduction

A numerical semigroup S is a subset of $\mathbb N$ closed under addition of natural numbers, containing $\{0\}$ and such that $\mathbb{N} \setminus S$ has finite cardinality.

Let $S \neq \mathbb{N}$ be a numerical semigroup.

The **Frobenius number** of S, denoted by $F(S)$, is the maximum of $\mathbb{N} \setminus S$. The **multiplicity** of S, m(S), is the minimum of $S \setminus \{0\}$.

The numerical semigroup S has a unique minimal system of generators, denoted msg (S) ; its cardinality is the so-called **embedding dimension** of S, denoted by $e(S)$.

Roughly speaking, the Frobenius problem is to find formulas of $F(S)$ in terms of $msg(S)$.

Introduction

Let T be a numerical semigroup. Given $d \in \mathbb{N} \setminus \{0\}$, we write

$$
\frac{T}{d} = \{x \in \mathbb{N} \mid dx \in T\}.
$$

which is also a numerical semigroup called the **quotient of** T by d.

Definition

Let S and T be numerical semigroups and $d \in \mathbb{N} \setminus \{0\}$. We say that T is a d−**multiple of** S if $\frac{T}{d} = S$.

Correspondingly, given two numerical semigroups S and T , we say that T is a multiple of S if there exists $d \in \mathbb{N} \setminus \{0\}$ such that $\frac{T}{d} = S$.

Introduction

Proposition

Let S and T be two numerical semigroups and $d \in \mathbb{N} \setminus \{0\}$. Then T is d−multiple of S, that is,

$$
\frac{T}{d}:=\{x\in\mathbb{N}\mid dx\in T\}=S,
$$

if and only if

$$
d\left(\mathbb{N}\setminus S\right)\subseteq\mathbb{N}\setminus\mathcal{T}\subseteq\mathbb{N}\setminus d\mathcal{S}.
$$

Specifically, in this case, $F(T) \ge d F(S)$.

(Mostly open) Problems

Let $S \neq \mathbb{N}$ be a numerical semigroup and $d \in \mathbb{N} \setminus \{0\}$.

- ▶ Compute (if possible) all d−multiples of S.
- ▶ Solve the Frobenius problem for d−multiples of S in terms of F(S).
- ▶ Determine if a given numerical semigroup has a multiple with embedding dimension greater than or equal to three.
- ▶ Determine

 $min{e(T) | T$ is a multiple of S

for a given numerical semigroup S.

This number is called quotient rank of S.

The quotient rank of S is bounded above by $e(S)$, since $S/1 = S$. Then, S is said to have full quotient rank when the quotient rank of S is equal to $e(S)$.

Computation of all d−multiples of S

We write $M_d(S)$ for the set of all numerical semigroups d–multiples of S, that is,

 $M_d(S) = \{T \text{ is a numerical semigroup } | d(N \setminus S) \subseteq N \setminus T \subseteq N \setminus dS \}.$

It is known [Rosales+García-Sánchez (2008), Swanson (2009)] that there are infinitely many elements in the set $M_d(S)$.

We write max $M_d(S)$ for the set of maximal elements of $M_d(S)$ with respect to inclusion.

Proposition

- \blacktriangleright The set max $M_d(S)$ is never empty.
- ▶ If $T \in \max M_d(S)$ then $F(T) = d F(S)$.

In particular, max $M_d(S)$ has finite cardinality.

Example: $F(T) = d F(S) \nRightarrow T \in \text{max } M_d(S)$

Let $S = \langle 3, 4, 5 \rangle$ and $d = 3$. If $\mathcal{T} = \langle 4, 7, 9, 10 \rangle$ and $\mathcal{T}' = \langle 4, 5, 7 \rangle$, then one can see that $\mathcal{T} \subsetneq \mathcal{T}'$, that

$$
\frac{T}{d}=\frac{T'}{d}=S
$$

and that

$$
\mathsf{F}(\mathcal{T})=\mathsf{F}(\mathcal{T}')=3\,\mathsf{F}(S)=6.
$$

Therefore, $T \notin \max M_d(S)$ although has the minimum possible Frobenius number among the elements of $M_d(S)$.

Moreover, one can easily check $¹$ that</sup>

$$
\text{max}\,M_d(S)=\{\langle 4,5,7\rangle\}
$$

because $\langle 4, 5, 7 \rangle$ is the only irreducible numerical semigroup with Frobenius number equal to 6.

 1 GAP Package NumericalSgps: <https://gap-packages.github.io/numericalsgps/>

Recall that a numerical semigroup with Frobenius number F is **irreducible** if and only if it is maximal in the set of all numerical semigroups with Frobenius number F.

Proposition

S is irreducible if and only if every $T \in \max M_d(S)$ is irreducible.

Since max $M_d(S)$ is a subset of the set of (irreducible, if S is) numerical semigroups with Frobenius number $d F(S)$, we can naively compute $max M_d(S)$.

Computation of all d−multiples of S (cont.)

Theorem There exists an explicit surjective map

$$
\Theta_S^d : \mathsf{M}_d(S) \longrightarrow \max \mathsf{M}_d(S); \ \mathcal{T} \mapsto \Theta_S^d(\mathcal{T})
$$

Therefore, to compute $M_d(S)$, it is "enough" to know what the fibers of $\Theta_{\mathcal{S}}^{d}$ are like.

Proposition

Given $R \in \max M_d(S)$, the set $(\Theta_S^d)^{-1}(R)$ can be arranged (by inclusion) as a rooted three $G(R)$ with root R.

The set of children of $T \in \mathcal{G}(R)$ - Case 1.

Proposition

Let $T \in M_d(S)$ and $R = \Theta_S^d(T)$. If $F(T) = d F(S)$, then the set of children of T in $G(R)$ is equal to the union of

$$
\{T \setminus \{x\} \subset \mathbb{N} \mid x \in \text{msg}(T), x \notin d \text{ } S \text{ and } x > F(T)\}
$$

and

$$
\{T \setminus \{x\} \subset \mathbb{N} \mid x \in msg(T), x \notin d \text{ } S, \text{ } x < F(T) \text{ and } x = (*)\},
$$

where

$$
(*) = \max \Big\{ z \in \{x\} \cup (\mathbb{N} \setminus \mathcal{T}) \mid 2z \in \mathcal{T} \setminus \{x\}, z \notin d(\mathbb{N} \setminus S)
$$

and $z - y \notin \mathcal{T} \setminus \{x\},$ for every $y \in \mathcal{T} \setminus \{x\} \Big\}.$

The set of children of $T \in \mathcal{G}(R)$ - Case 2.

Proposition

Let $T \in M_d(S)$ and $R = \Theta_S^d(T)$. If $F(T) > d F(S)$, then the set of children of T in $\mathcal{G}(R)$ is equal to

 $\{T \setminus \{x\} \subset \mathbb{N} \mid x \in \text{msg}(T), x \notin d \text{ } S \text{ and } x > F(T)\}.$

In particular, if $F(T) \neq d F(S)$ and $x < F(T)$ for every $x \in \text{msg}(T)$, then T is a leaf of $\mathcal{G}(R)$.

Example

Let $S = \langle 3, 4, 5 \rangle$ and $d = 3$. In this case, max $M_d(S) = \{\langle 4, 5, 7 \rangle\}$ and the rooted tree grows as depicted below:

(*) Continuous arrows connect those numerical semigroups in $M_d(S)$ with minimum possible Frobenius number.

$M_d(S)$ −system of generators

Proposition

 $T \in M_d(S)$ if and only if there exists a finite subset X of S such that

$$
\blacktriangleright \langle X \rangle \cap d(\mathbb{N} \setminus S) = \varnothing,
$$

$$
\blacktriangleright \ \gcd(X \cup \{d\}) = 1,
$$

$$
\blacktriangleright T = \langle X \rangle + d \, S.
$$

In this case, if there is not proper subset of X with that property, we say that X a is minimal $M_d(S)$ −system of generators of T.

$$
\overbrace{\hspace{1.5cm}}^{\hspace{1.5cm}\longrightarrow\hspace{1.5cm}}
$$

Theorem

If $T \in M_d(S)$, then msg $(T) \cap (N \setminus d \text{ msg}(S))$ is the (unique) minimal $M_d(S)$ –system of generators of T.

The M_d(S)–**embedding dimension** of $T \in M_d(S)$ is the cardinality of its minimal $M_d(S)$ −system of generators of T.

$M_d(S)$ −embedding dimension one

Proposition

A subset T of N is a d−multiple of S with $M_d(S)$ −embedding dimension one if and only if there exists $x \in S$ with $gcd(x, d) = 1$ such that

$$
T=\langle x\rangle+d\,S.
$$

In this case, $x = min(T \setminus dS)$.

Recall that a numerical semigroup T is a gluing of T_1 and T_2 if $T = \lambda T_1 + \mu T_2$ for some $\lambda \in T_1 \setminus \text{msg}(T_1)$ and $\mu \in T_2 \setminus \text{msg}(T_2)$ with $gcd(\lambda, \mu) = 1.$

Corollary

A subset \top of $\mathbb N$ is a d−multiple of S with $\mathsf M_d(\mathsf S)$ −embedding dimension one with min($T \setminus dS$) \notin msg(S) if and only if T is a gluing of N and S.

 $M_d(S)$ −embedding dimension one (cont.)

Proposition (Frobenius problem)

If T is a d–multiple of S with $M_d(S)$ –embedding dimension one, then

$$
F(T) = (d-1) \min(T \setminus dS) + d F(S).
$$

Formulas for the genus, pseudo-Frobenius numbers are also obtained.

Full quotient rank

Recall that S has full quotient rank if

 $min{e(T) | T$ is a multiple of S } = e(S).

Proposition

If msg $(S) = \{a_1, \ldots, a_n\}$ and

$$
\sum_{\substack{j=1 \ j \neq i}}^e a_j - a_i \notin S \text{ for every } i \in \{1,\ldots,e\},\
$$

then S has full quotient rank.

Corollary (Numerical semigroups having unique Betti element) If c_1, \ldots, c_n are relatively prime integers greater than one and

$$
\mathrm{msg}(S) = \left\{ \prod_{j=1, j \neq i}^{e} c_j \mid i \in \{1, \ldots, e\} \right\},
$$

then S has full quotient rank.

Full quotient rank

Recall that S has full quotient rank if

 $min{e(T) | T$ is a multiple of S } = e(S).

Proposition

If msg $(S) = \{a_1, \ldots, a_n\}$ and

$$
\sum_{\substack{j=1 \ j \neq i}}^e a_j - a_i \notin S \text{ for every } i \in \{1,\ldots,e\},\
$$

then S has full quotient rank.

Open question. Is the above condition necessary? **Proposition** If $\text{msg}(S) = \{a_1 < \ldots < a_e\}$ and $\sum_{j=1}^e a_j - a_i \notin S$ for every $i \neq i$ $i \in \{1, \ldots, e\}$, then $a_1 \geq 2^{e-1}$.

- 暈 T. Bogart, C. O'Neill, K. Woods, When is a numerical semigroup a quotient?, Bull. Aust. Math. Soc. 109(1) (2024), 67–76.
- **P.A. García Sánchez, I. Ojeda, J.C. Rosales, Affine semigroups** having a unique Betti element. J. Algebra Appl. 12(3) (2013). 250177, 11 pages.
- M.A. Moreno, J. Nicola, E. Pardo, H. Thomas, Numerical semigroups that are not intersections of d–squashed semigroups. Canadian Math. Bull. 52 (2009), no. 4, 598–612.
- **J.C. Rosales and P.A. García Sánchez, Every numerical semigroup is** one half of a symmetric numerical semigroup, Proc. Amer. Math. Soc. 136 (2008), 475–477.
- I. Swanson. Every numerical semigroup is one over d of infinitely 晶 many symmetric numerical in Commutative algebra and its applications, 383–386. Walter de Gruyter GmbH & Co. KG, Berlin, 2009

Thanks for your attention!

