On the isomorphism problem for monoids of product-one sequences

Jun Seok Oh (with Alfred Geroldinger)

Jeju National University

International Meeting of Numerical Semigroups 2024 July 12, 2024

Abelian Case

Result 000000

Outline

1. The Isomorphism Problem

2. Abelian Case

3. Result

Result 000000

Product-one sequences

Let G be a group.

• An element of the free abelian monoid $\mathcal{F}(G)$ with a basis G is said to be a sequence over G, i.e., every sequence S over G has the form

$$S = (g_1, g_2, \dots, g_\ell) = g_1 \cdot g_2 \cdot \dots \cdot g_\ell = \prod_{g \in G}^{\bullet} g^{[\mathsf{v}_g(S)]}.$$

• S is called a product-one sequence if the terms can be ordered such that their product (in G) is equal to the identity element of G.

ex) If $G = \{\pm E, \pm I, \pm J, \pm K\}$ is the quaternion group of order 8, then a sequence

$$I^{[4]} \cdot J^{[2]} = I \cdot I \cdot I \cdot I \cdot J \cdot J$$

is product-one, because E = IIIJIJ

Abelian Case

Result 000000

Product-one sequences

- The set $\mathcal{B}(G)$ of all product-one sequences is a submonoid of $\mathcal{F}(G)$, and it is called the monoid of product-one sequences over G.
- An atom (or irreducible element) in $\mathcal{B}(G)$ is called a minimal product-one sequence.
- The Davenport constant D(G) is the maximal length of an atom in $\mathcal{B}(G)$.
- While earlier work often focussed on the case of abelian groups, sequences over non-abelian groups have received wide attention due to their applications in various branches of algebra, such as invariant theory and factorization theory.

Factorizations and Set of lengths

Let ${\cal H}$ be a monoid, that is, a commutative, cancellative semigroup with identity.

- Q. Are the arithmetical properties of two objects H_1 and H_2 characteristic for H_1 and H_2 ?
- \rightsquigarrow The sets of lengths are the best investigated properties.
 - If $a = u_1 \cdot \ldots \cdot u_k$ for atoms u_1, \ldots, u_k in H, k is called the length of factorization of a, and we denote by

 $\mathsf{L}(a) = \{k \in \mathbb{N} \mid a \text{ has a factorization of length } k\}.$

- $\mathcal{L}(H) = \{ \mathsf{L}(a) \mid a \in H \}$ denotes the system of sets of lengths of H.
- ex) Let K be an algebraic number field with class group G. Then there exists a factorization preserving map β from \mathcal{O}_K to the monoid of product-one sequences over the class group G of K. More precisely, $\beta(a) = [P_1] \cdot \ldots \cdot [P_k]$, where $a\mathcal{O}_K = P_1 \cdots P_k$ is the factorization into prime ideals.

Result 000000

The Characterization Problem

• Characterization Problem

Given two finite (abelian) groups G_1 and G_2 such that $\mathcal{L}(\mathcal{B}(G_1)) = \mathcal{L}(\mathcal{B}(G_2))$, does it follow that $G_1 \cong G_2$?

It holds true so far for the following groups:

- Geroldinger, Schmid, Zhong
 - *G* is an elementary 2-groups.
 - $G \cong C_{n_1} \oplus C_{n_2}$, where $n_1, n_2 \in \mathbb{N}$ with $n_1 \mid n_2$ and $n_1 + n_2 > 4$.
 - $G \cong C_n^r$, where $r, n \in \mathbb{N}$ with $r \leq n-3$.
- Geroldinger, Grynkiewicz, OH, Zhong
 - G is a finite group with $D(G) \leq 6$.
 - $G \cong D_{2n}$ with n odd.

Result 000000

The Isomorphism Problem

• Isomorphism Problem

Given two finite groups G_1 and G_2 such that $\mathcal{B}(G_1) \cong \mathcal{B}(G_2)$, does it follow that $G_1 \cong G_2$?

An affirmative answer to the Isomorphism Problem is a necessary condition for an affirmative answer to the Characterization Problem.

• The answer to the Isomorphism Problem was known so far only for abelian groups, and its proof heavily depends on the ideal-theoretic properties of monoids.

Abelian Case

Result 000000

Outline

1. The Isomorphism Problem

2. Abelian Case

3. Result

Abelian Case

Result 000000

Krull monoids

- A monoid homomorphism $\varphi \colon H \to D$ is a divisor theory if the following conditions hold;
 - 1. For $a, b \in H$, $a \mid b$ in H if and only if $\varphi(a) \mid \varphi(b)$ in D,
 - 2. $D = \mathcal{F}(P)$ is a free abelian monoid,
 - 3. For $p \in P$, there exist $a_1, \ldots, a_n \in H$ such that $p = \gcd(\varphi(a_1), \ldots, \varphi(a_n)).$
- → The main consequence of divisor theories is that it has a universal property.
 - The complete integral closure of a monoid H is $\widehat{H} = \{x \in q(H) \mid \exists c \in H \text{ such that } cx^n \in H \text{ for all } n \in \mathbb{N}\}.$

Result 000000

Krull monoids

A monoid H is Krull if the following equivalent conditions holds;

- (a) H satisfies the ACC on v-ideals, and $H = \hat{H}$.
- (b) H satisfies the ACC on v-ideals, and every non-empty v-ideal of H is v-invertible.
- (c) The map $H \to \mathcal{I}_v^*(H)$, given by $a \mapsto aH$, is a divisor theory.
- (d) H has a divisor theory.
- ex) The ring \mathcal{O}_K of algebraic integers is an 1-dimensional Krull domain.
- → Every Krull monoid satisfies the transfer machinery.

The Isomorphism Problem: Abelian Case

- The followings are equivalent;
 - (a) G is abelian.
 - (b) $\mathcal{B}(G)$ is Krull.
 - (c) $\mathcal{B}(G)$ is transfer Krull.
 - (d) $\mathcal{B}(G) \hookrightarrow \mathcal{F}(G)$ is a divisor theory.

The map

$$\mathcal{F}(G)/\mathcal{B}(G) \to G$$
, $(g_1 \cdot \ldots \cdot g_\ell) \mathsf{q}(\mathcal{B}(G)) \mapsto g_1 \cdots g_\ell$

is a group isomorphism.

• By the Uniqueness Theorem for divisor theories, $\mathcal{B}(G_1) \cong \mathcal{B}(G_2)$ implies that $\mathcal{F}(G_1) \cong \mathcal{F}(G_2)$, so that

$$G_1 \cong \mathcal{F}(G_1)/\mathcal{B}(G_1) \cong \mathcal{F}(G_2)/\mathcal{B}(G_2) \cong G_2.$$

Abelian Case

Result 000000

Outline

1. The Isomorphism Problem

2. Abelian Case

3. Result

The Isomorphism Problem: General Case

Let G be a group and G' be the commutator subgroup.

• For
$$S = g_1 \cdot \ldots \cdot g_\ell \in \mathcal{F}(G)$$
,

 $\pi(S) = \left\{ g_{\sigma(1)} \cdots g_{\sigma(\ell)} \mid \sigma \text{ is a permutation of } [1,\ell] \right\}.$

• Geroldinger-Grynkiewicz-OH-Zhong, 2022 If G is finite, then $\widehat{\mathcal{B}(G)} = \{S \in \mathcal{F}(G) \mid \pi(S) \subseteq G'\}$ is Krull.

Fadinger-Zhong consider the following monoid:

- $\mathcal{B}(G)^* := \{ S \in \mathcal{F}(G) \mid \pi(S) \subseteq G' \} \subseteq \mathcal{F}(G) \text{ is a submonoid with}$ $\mathcal{B}(G) \subseteq \mathcal{B}(G)^* \subseteq \mathcal{F}(G) .$
- G is abelian $\implies \mathcal{B}(G) = \mathcal{B}(G)^*$.
- G is perfect $\implies \mathcal{B}(G)^{\star} = \mathcal{F}(G).$

The Isomorphism Problem: General Case

- Fadinger-Zhong, 2023
 - 1. The map

$$\begin{array}{rcl} \mathcal{F}(G)/\mathcal{B}(G) & \to & G/G' \\ S\mathfrak{q}(\mathcal{B}(G)) & \mapsto & gG' & \text{for } g \in \pi(S) \end{array}$$

is a group isomorphism.

- 2. $\mathcal{B}(G)^*$ is a Krull monoid with $\mathcal{B}(G) \subseteq \widehat{\mathcal{B}(G)} \subseteq \mathcal{B}(G)^*$ and $\mathcal{B}(G)^* \hookrightarrow \mathcal{F}(G)$ is a divisor theory.
- 3. $\widehat{\mathcal{B}(G)}$ is Krull if and only if $\widehat{\mathcal{B}(G)} = \mathcal{B}(G)^*$.
- 4. If G is torsion, then $\widehat{\mathcal{B}(G)} = \mathcal{B}(G)^{\star}$.

For groups G_1 and G_2 ,

$$\begin{array}{ll}
\mathcal{B}(G_1) \cong \mathcal{B}(G_2) & \Longrightarrow & \widehat{\mathcal{B}(G_1)} \cong \widehat{\mathcal{B}(G_2)} \\
\stackrel{??}{\Longrightarrow} & \mathcal{B}(G_1)^* \cong \mathcal{B}(G_2)^*
\end{array}$$

Theorem (Geroldinger-OH)

Let G_1 and G_2 be groups and suppose that G_1 is a torsion group. Then, $\mathcal{B}(G_1) \cong \mathcal{B}(G_2)$ if and only if $G_1 \cong G_2$.

Ingredient

- The opposite group G^{op} of a group G has the same underlying set and its group operation is defined by g₁ ⋅^{op} g₂ := g₂g₁ for all g₁, g₂ ∈ G.
- The map $\psi \colon G \to G^{\rm op}$, defined by $\psi(g) = g^{-1}$ for all $g \in G$, is a group isomorphism.
- A group homomorphism $\varphi \colon G_1 \to G_2$ is an *anti-homomorphism* if $\varphi(g_1g_2) = \varphi(g_2)\varphi(g_1)$ for all $g_1, g_2 \in G_1$.

Sketch of the Proof

Suppose that $\mathcal{B}(G_1) \cong \mathcal{B}(G_2)$.

- $\widehat{\mathcal{B}(G_1)} \cong \widehat{\mathcal{B}(G_2)}$, and for each $i, \widehat{\mathcal{B}(G_i)} \hookrightarrow \mathcal{F}(G_i)$ is a divisor theory.
- $\mathcal{F}(G_1) \cong \mathcal{F}(G_2)$ (by the uniqueness for divisor theories).
- We have a bijection $\varphi \colon G_1 \to G_2$ such that

1.
$$\operatorname{ord}(g) = \operatorname{ord}(\varphi(g))$$
 for all $g \in G_1$,
2. $\varphi(1_{G_1}) = 1_{G_2}$,
3. $S = g_1 \cdot \ldots \cdot g_\ell \in \mathcal{B}(G_1)$ iff $\varphi(S) = \varphi(g_1) \cdot \ldots \cdot \varphi(g_\ell) \in \mathcal{B}(G_2)$,
4. $\varphi(g^{-1}) = \varphi(g)^{-1}$ for all $g \in G_1$, and
5. for all $g_1, g_2 \in G_1$, we have

$$\varphi(g_1g_2)=\varphi(g_1)\varphi(g_2) \quad \text{ or } \quad \varphi(g_1g_2)=\varphi(g_2)\varphi(g_1)\,.$$

• $\varphi: G_1 \to G_2$ is either a group isomorphism or a group anti-isomorphism.

Abelian Case

Result 000000

References

- V. Fadinger and Q. Zhong, *On product-one sequences over subsets of groups*, Period. Math. Hung. **86**, (2023), 454-494.
- A. Geroldinger, D.J. Grynkiewicz, J.S. Oh, and Q. Zhong, On product-one sequences over dihedral groups, J. Algebra Appl. 21 (2022), 2250064.
- A. Geroldinger and J.S. Oh, On the isomorphism problem for monoids of product-one sequences, arXiv:2304.01459.

Thank you for your attention!