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Product-one sequences

Let G be a group.

• An element of the free abelian monoid F(G) with a basis G is said
to be a sequence over G, i.e., every sequence S over G has the form

S = (g1, g2, . . . , gℓ) = g1 · g2 · . . . · gℓ =
∏•

g∈G
g[vg(S)] .

• S is called a product-one sequence if the terms can be ordered such
that their product (in G) is equal to the identity element of G.

ex) If G = {±E,±I,±J,±K} is the quaternion group of order 8, then
a sequence

I [4] · J [2] = I · I · I · I · J · J

is product-one, because E = IIIJIJ
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Product-one sequences

• The set B(G) of all product-one sequences is a submonoid of F(G),
and it is called the monoid of product-one sequences over G.

• An atom (or irreducible element) in B(G) is called a minimal
product-one sequence.

• The Davenport constant D(G) is the maximal length of an atom in
B(G).

 While earlier work often focussed on the case of abelian groups,
sequences over non-abelian groups have received wide attention due
to their applications in various branches of algebra, such as invariant
theory and factorization theory.
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Factorizations and Set of lengths
Let H be a monoid, that is, a commutative, cancellative semigroup with
identity.

Q. Are the arithmetical properties of two objects H1 and H2

characteristic for H1 and H2?

 The sets of lengths are the best investigated properties.

• If a = u1 · . . . · uk for atoms u1, . . . , uk in H , k is called the length
of factorization of a, and we denote by

L(a) = {k ∈ N | a has a factorization of length k}.

• L(H) = {L(a) | a ∈ H} denotes the system of sets of lengths of H .

ex) Let K be an algebraic number field with class group G. Then there
exists a factorization preserving map β from OK to the monoid of
product-one sequences over the class group G of K. More precisely,
β(a) = [P1] · . . . · [Pk], where aOK = P1 · · ·Pk is the factorization
into prime ideals.
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The Characterization Problem

• Characterization Problem
Given two finite (abelian) groups G1 and G2 such that
L(B(G1)) = L(B(G2)), does it follow that G1

∼= G2?

It holds true so far for the following groups:

• Geroldinger, Schmid, Zhong
• G is an elementary 2-groups.

• G ∼= Cn1
⊕Cn2

, where n1, n2 ∈ N with n1 | n2 and n1 + n2 > 4.

• G ∼= Cr
n, where r, n ∈ N with r ≤ n− 3.

• Geroldinger, Grynkiewicz, OH, Zhong
• G is a finite group with D(G) ≤ 6.

• G ∼= D2n with n odd.
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The Isomorphism Problem

• Isomorphism Problem
Given two finite groups G1 and G2 such that B(G1) ∼= B(G2), does
it follow that G1

∼= G2?

 An affirmative answer to the Isomorphism Problem is a necessary
condition for an affirmative answer to the Characterization Problem.

• The answer to the Isomorphism Problem was known so far only for
abelian groups, and its proof heavily depends on the ideal-theoretic
properties of monoids.



The Isomorphism Problem Abelian Case Result

Outline

1. The Isomorphism Problem

2. Abelian Case

3. Result



The Isomorphism Problem Abelian Case Result

Krull monoids

• A monoid homomorphism ϕ : H → D is a divisor theory if the
following conditions hold;

1. For a, b ∈ H , a | b in H if and only if ϕ(a) | ϕ(b) in D,

2. D = F(P ) is a free abelian monoid,

3. For p ∈ P , there exist a1, . . . , an ∈ H such that
p = gcd(ϕ(a1), . . . , ϕ(an)).

 The main consequence of divisor theories is that it has a universal
property.

• The complete integral closure of a monoid H is
Ĥ = {x ∈ q(H) | ∃ c ∈ H such that cxn ∈ H for all n ∈ N}.
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Krull monoids

A monoid H is Krull if the following equivalent conditions holds;

(a) H satisfies the ACC on v-ideals, and H = Ĥ .

(b) H satisfies the ACC on v-ideals, and every non-empty v-ideal of H
is v-invertible.

(c) The map H → I∗

v (H), given by a 7→ aH , is a divisor theory.

(d) H has a divisor theory.

ex) The ring OK of algebraic integers is an 1-dimensional Krull domain.

 Every Krull monoid satisfies the transfer machinery.
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The Isomorphism Problem: Abelian Case

• The followings are equivalent;

(a) G is abelian.

(b) B(G) is Krull.

(c) B(G) is transfer Krull.

(d) B(G) →֒ F(G) is a divisor theory.

• The map

F(G)/B(G) → G , (g1 · . . . · gℓ)q(B(G)) 7→ g1 · · · gℓ

is a group isomorphism.

• By the Uniqueness Theorem for divisor theories, B(G1) ∼= B(G2)
implies that F(G1) ∼= F(G2), so that

G1
∼= F(G1)/B(G1) ∼= F(G2)/B(G2) ∼= G2.
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The Isomorphism Problem: General Case

Let G be a group and G′ be the commutator subgroup.

• For S = g1 · . . . · gℓ ∈ F(G),

π(S) = {gσ(1) · · · gσ(ℓ) | σ is a permutation of [1, ℓ]} .

• Geroldinger-Grynkiewicz-OH-Zhong, 2022

If G is finite, then B̂(G) = {S ∈ F(G) | π(S) ⊆ G′} is Krull.

Fadinger-Zhong consider the following monoid:

• B(G)⋆ := {S ∈ F(G) | π(S) ⊆ G′} ⊆ F(G) is a submonoid with

B(G) ⊆ B(G)⋆ ⊆ F(G) .

• G is abelian =⇒ B(G) = B(G)⋆.

• G is perfect =⇒ B(G)⋆ = F(G).
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The Isomorphism Problem: General Case

• Fadinger-Zhong, 2023

1. The map
F(G)/B(G) → G/G′

Sq(B(G)) 7→ gG′ for g ∈ π(S)

is a group isomorphism.

2. B(G)⋆ is a Krull monoid with B(G) ⊆ B̂(G) ⊆ B(G)⋆ and
B(G)⋆ →֒ F(G) is a divisor theory.

3. B̂(G) is Krull if and only if B̂(G) = B(G)⋆.

4. If G is torsion, then B̂(G) = B(G)⋆.

For groups G1 and G2,

B(G1) ∼= B(G2) =⇒ B̂(G1) ∼= B̂(G2)

??
=⇒ B(G1)

⋆ ∼= B(G2)
⋆
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Theorem (Geroldinger-OH)

Let G1 and G2 be groups and suppose that G1 is a torsion group. Then,

B(G1) ∼= B(G2) if and only if G1
∼= G2.

Ingredient

• The opposite group Gop of a group G has the same underlying set
and its group operation is defined by g1 ·

op g2 := g2g1 for all
g1, g2 ∈ G.

• The map ψ : G→ Gop, defined by ψ(g) = g−1 for all g ∈ G, is a
group isomorphism.

• A group homomorphism ϕ : G1 → G2 is an anti-homomorphism if
ϕ(g1g2) = ϕ(g2)ϕ(g1) for all g1, g2 ∈ G1.
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Sketch of the Proof
Suppose that B(G1) ∼= B(G2).

• B̂(G1) ∼= B̂(G2), and for each i, B̂(Gi) →֒ F(Gi) is a divisor theory.

• F(G1) ∼= F(G2) (by the uniqueness for divisor theories).

• We have a bijection ϕ : G1 → G2 such that

1. ord(g) = ord
(

ϕ(g)
)

for all g ∈ G1,

2. ϕ(1G1
) = 1G2

,

3. S = g1 · . . . · gℓ ∈ B(G1) iff ϕ(S) = ϕ(g1) · . . . · ϕ(gℓ) ∈ B(G2),

4. ϕ(g−1) = ϕ(g)−1 for all g ∈ G1, and

5. for all g1, g2 ∈ G1, we have

ϕ(g1g2) = ϕ(g1)ϕ(g2) or ϕ(g1g2) = ϕ(g2)ϕ(g1) .

• ϕ : G1 → G2 is either a group isomorphism or a group
anti-isomorphism.
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