

International Meeting of Numerical Semigroups

Ideals of affine semigroups, *I*(*S*)-semigroups and MED-semigroups

Joint work with J.I. García-García (Universidad de Cádiz), and

A. Vigneron-Tenorio (Universidad de Cádiz).

Raquel Tapia-Ramos (raquel.tapia@uca.es) Universidad de Cádiz

Moreno-Frías, M.A.; Rosales, J.C.,

Counting the Ideals with a Given Genus of a Numerical Semigroup with Multiplicity two.

Symmetry (2021), 13, no. 794.

Rosales, J. C.; García-Sánchez, P. A., Numerical Semigroups.

Dev. Math., 20 Springer, New York, 2009.

García-García, J. I.; – ; Vigneron-Tenorio, A. On ideals of affine semigroups and affine semigroups with maximal embedding dimension. arXiv:2405.14648 [math.AC]

Background

Background

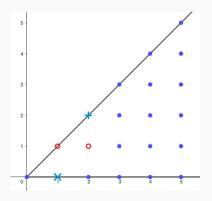
(S, +) $S \subset \mathbb{N}^p(\mathcal{C})$ $0 \in S$ Monoid Affine semigroup S is finitely generated Numerical C-semigroup $\rightarrow msg(S)$ $\mathcal{C} \setminus S$ is finite

 \mathcal{C} is the minimal positive integer cone containing S.

Let S be a C-semigroup, and let \leq be a monomial order.

 $egin{aligned} \mathcal{H}(S) &= \mathcal{C} \setminus S \ g(S) &= \# \mathcal{H}(S) \ \mathrm{Fb}(S) &= \max_{\preceq} \mathcal{H}(S) \end{aligned}$

 $\{\tau_1, \tau_2, \dots, \tau_t\}$ are the extremal rays of C $\operatorname{mult}_i(S) = \min_{\leq}(\tau_i \cap S), \ 1 \leq i \leq t$



Definition: Any subset P of an affine semigroup S is an **ideal** of S if

 $P+S\subseteq P$.

Example

Any subset A of an affine semigroup S.

P = A + S is an ideal of S.

Definition: Any subset P of an affine semigroup S is an ideal of S if

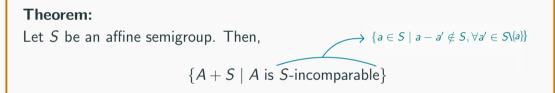
 $P+S\subseteq P$.

Example

Any subset A of an affine semigroup S.

P = A + S is an ideal of S.

It could exist two <u>different</u> finite subsets $A_1, A_2 \subseteq S$ such that $A_1 + S = A_2 + S$.



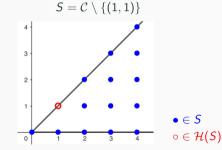
is the set formed by all the ideals of S. Moreover, if A_1 and A_2 are different S-incomparable sets, then $A_1 + S \neq A_2 + S$.

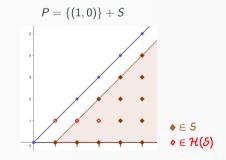
Ideals of an affine semigroup

Lemma:

Given a C-semigroup S, and P an ideal of S. Then

 $P \cup \{0\} \text{ is a } \mathcal{C}\text{-semigroup} \Leftrightarrow \begin{array}{l} \exists Y \subset P \setminus \{0\} \text{such that} \\ Y \cap \tau_i \neq \emptyset \ \forall 1 \leq i \leq t. \end{array}$





 $P \text{ is an ideal of } S \quad \left\{ \begin{array}{l} P \cup \{0\} \text{ is not a } \mathcal{C} \text{ semigroup} \\ \underbrace{P \cup \{0\}}_{\tau} \text{ is a } \mathcal{C} \text{-semigroup} \end{array} \right.$

Definition

Let S be a C-semigroup. A C-semigroup T is an I(S)-semigroup of S if $T \setminus \{0\}$ is an ideal of S.

 $\mathcal{J}(\mathcal{S}) := \{ T \mid T \text{ is an } I(S) \text{-semigroup} \}.$

We define the tree $G(\mathcal{J}(\mathcal{S}))$:

- The vertex set is $\mathcal{J}(\mathcal{S})$
- $(T_1, T_2) \in \mathcal{J}(\mathcal{S}) \times \mathcal{J}(\mathcal{S})$ is an edge if $T_2 = T_1 \cup \{\mathcal{O}_{\mathcal{S}}(T_1)\}.$

 $\mathcal{O}_A(B) = \max_{\preceq} (A \setminus B)$

If (T_1, T_2) is an edge, we say that T_1 is a child of T_2 .

Lemma:

Let S be a C-semigroup and T be a non-proper I(S)-semigroup. Then, $T \cup \{\mathcal{O}_S(T)\} \in \mathcal{J}(S)$.

Theorem:

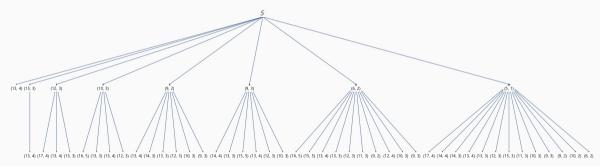
For any C-semigroup S, $G(\mathcal{J}(S))$ is a tree with root S. Furthermore, the set of children of any $T \in \mathcal{J}(S)$ is the set

$$\{T \setminus \{x\} \mid x \in Minimals (msg(T)) \text{ and } x \succ \mathcal{O}_{S}(T)\}.$$

Let $x, x' \in S, x \leq s x' \Leftrightarrow x' - x \in S.$

Example:

Let S be the C-semigroup such that $(f_{2}, f_{3}) = (f_{2}, f_{3}) = (f_{3}, f_{3}) = (f_$



Given $f \in C$ and a monomial order \leq , consider $A_S(f) = \{x \in S \mid x \prec f \text{ and } f - x \notin S\}.$

Proposition:

Let S be a C-semigroup, $f \in C$ greater than or equal to Fb(S), and \leq a monomial order. The following conditions are equivalent:

T is an I(S)-semigroup with Frobenius element Fb(T) = f.

 $T = X \sqcup \{x \in C \mid x \succ f\} \cup \{0\}$, where X is a subset of $A_S(f)$ such that if there exists $x \in X$ with $x + s \prec f$ for some $s \in S$, then $x + s \in X$.

Example:

Let S be the C-semigroup mentioned, and consider f = (11, 3). Fixed the degree lexicographic order.

All I(S)-semigroups with Frobenius element f = (11, 3) are determined by $X \sqcup \{x \in C \mid x \succ (11, 3)\} \cup \{0\}$ for each X in the set

$\{\emptyset\},$	$\{(9, 2), (9, 3)\},\$	$\{(9, 2), (9, 3), (10, 2)\},\$
{(9, 2)},	$\{(9, 2), (10, 2)\},\$	$\{(9, 2), (9, 3), (10, 3)\},\$
{(9, 3)},	$\{(9, 2), (10, 3)\},\$	$\{(9, 2), (10, 2), (10, 3)\},\$
{(10, 2)},	$\{(9, 3), (10, 2)\},\$	$\{(9, 3), (10, 2), (10, 3)\},\$
{(10, 3)},	$\{(9, 3), (10, 3)\},\$	$\{(9, 2), (9, 3), (10, 2), (10, 3)\}.$
	$\{(10, 2), (10, 3)\},\$	

Theorem:

Let S be a C-semigroup and $M = \{m_1, \ldots, m_t\} \subset S \setminus \{0\}$ such that $m_i \in \tau_i \setminus \{0\}$ for all $i \in [t]$. The set of all I(S)-semigroups with *i*-multiplicity m_i , $1 \leq i \leq m$, is

 $\{((M \sqcup X) + S) \cup \{0\} \mid X \in \mathcal{P}(\mathcal{H}(M + S) \cap S)\}.$

Example

Again, let S be the C-semigroup mentioned, and consider $M = \{(10, 2), (6, 2)\}$. There exists 2047 sets X determining all I(S)-semigroups with the *i*-multiplicities in M.

There exists 351 I(S)-semigroups different such that M is the union of the *i*-multiplicities of any of them.

Let $S \subset \mathbb{N}^p$ be an affine semigroup with t extremal ray, such that

$$msg(S) = \{\underbrace{n_1, \ldots, n_t}_{E = \bigcup_{i \in [t]} mult_i(S)}, \underbrace{n_{t+1}, \ldots, n_r}_{A}\}.$$

The Apery set of S respect to $m \in S \setminus \{0\}$ is the set

$$Ap(S,m) = \{s \in S \mid s - m \notin S\}.$$

For any non-numerical affine semigroup, this set is not finite
∩_{i∈[t]}Ap(S, n_i) is finite
A ⊂ ∩_{i∈[t]}Ap(S, n_i)

Definition

Given $S \subset \mathbb{N}^p$ an affine semigroup minimally generated by $E \sqcup A$, S is a maximal embedding dimension affine semigroup (MED-semigroup) if

$$\cap_{i\in[t]}Ap(S,n_i)=A\sqcup\{0\}.$$

Definition

Given $S \subset \mathbb{N}^p$ an affine semigroup minimally generated by $E \sqcup A$, S is a maximal embedding dimension affine semigroup (MED-semigroup) if

$$\cap_{i\in[t]}Ap(S,n_i)=A\sqcup\{0\}.$$

Theorem [García-Sánchez, Rosales, 2009] Let *S* be a numerical semigroup. Then,

T is a MED-semigroup $\Leftrightarrow T = \{m\} + S$, for some $m \in S \setminus \{0\}$.

Theorem

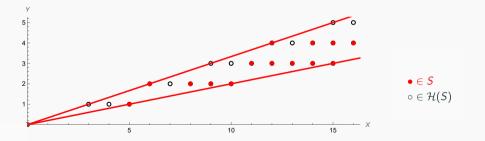
Let S be an affine semigroup, $M = \{m_1, \ldots, m_t\} \subset S$ such that $M \cap (\tau_i \setminus \{0\}) \neq \emptyset$ for every $i \in [t]$, and the ideal of S defined by M + S. Then, the I(S)-semigroup $T = (M + S) \cup \{0\}$ is a MED-semigroup.

MED-semigroups

Example

Let $S \subset \mathbb{N}^2$ be the affine semigroup such that

$$msg(S) = \{(5,1), (6,2), (8,2), (9,2), (12,3)\},\$$



MED-semigroup generated by $\{(5,1), (6,2), (8,2), (9,2), (12,3)\}$.

No additional constructions have been identified. We threw the open problem of whether more distinct constructions exist beyond those already proposed for obtaining MED-semigroups.

Thank you for your attention!

Monoides y semigrupos afines (ProyExcel_00868), Proyecto financiado en la convocatoria 2021 de Ayudas a Proyectos de Excelencia, en régimen de concurrencia competitiva, destinadas a entidades calificadas como Agentes del Sistema Andaluz del Conocimiento, en el ámbito del Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020). Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía.

