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Sequences I

Let G be an additive abelian group, G0 ⊂ G be a subset, and

Γ ⊂ End(G ) of a subset of the endomorphism group.

• A sequence S = g1 · . . . · gℓ over G0: �nite, unordered

sequence of terms from G0, repetition allowed;

• |S | = ℓ denotes its length and σ(S) = g1 + . . .+ gℓ its sum.

• Sequences are considered as elements of the free abelian

monoid F(G0).

• σΓ(S) = {γ1(g1) + . . .+ γℓ(gℓ) : γ1, . . . , γℓ ∈ Γ}
the set of Γ-weighted sums of S .

• Σ(S) = {σ(T ) : 1 ̸= T ∈ F(G ), T |S}.
• ΣΓ(S) =

⋃
1̸=T | S σΓ(T ).
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Monoids of Weighted Zero-Sum Sequences

A sequence S ∈ F(G0) is called

• a zero-sum sequence if σ(S) = 0,

• zero-sum free if 0 /∈ Σ(S),

• a Γ-weighted zero-sum sequence if 0 ∈ σΓ(S), and

• Γ-weighted zero-sum free if 0 /∈ ΣΓ(S).

We denote by

• B(G0) the monoid of zero-sum sequences over G0,

• BΓ(G0) the monoid of Γ-weighted zero-sum sequences over G0,

• B±(G0) the monoid of plus-minus weighted zero-sum

sequences over G0, in case that Γ = {id,−id}.
Weighted zero-sums are studied since 2006: Sukumar das Adhikari.
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Davenport Constants

• D(G ) := D
(
B(G )

)
is the maximal length of an irreducible

element in B(G );
d(G ) is the maximal length of a zero-sum free sequence.

• DΓ(G ) := D
(
BΓ(G )

)
is the maximal length of an irreducible

element in BΓ(G );
dΓ(G ) is ....

• D±(G ) := D
(
B±(G )

)
is the maximal length of an irreducible

element in B±(G );
d±(G ) is ...
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The Davenport constant I

The Davenport constant D(G ) is the maximal length of a minimal

zero-sum sequence over G , thus

D(G ) = max{ℓ | S = g1 · . . . ·gℓ is an irreducible element of B(G )} .

Let

G = Cn1 ⊕ . . .⊕ Cnr with 1 < n1 | . . . | nr

• 1+
∑r

i=1
(ni − 1) ≤ D(G ).

• 1960s: Equality holds for p-groups, for r ≤ 2, and for others.

• For every r ≥ 4 there are in�nitely many groups G of rank r
for which inequality holds.

• OPEN PROBLEM Determine D(G ) in terms of (n1, . . . , nr ).
D(Cn ⊕ Cn ⊕ Cn) =?
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Davenport Constants II

Let K be an algebraic number �eld with class group G , ring of

integers OK , and Galois group Γ. If [K : Q] = 2, then Γ = {id, τ},
with τ(g) = −g for g ∈ G , whence DΓ(G ) = D±(G ).

Rogers 1962: D(G ) is the maximal number of prime ideals

occurring in the the prime ideal factorization of an irreducible

element of OK .

Halter-Koch 2014:

• 1+ d(G ) = D(G ) is the smallest ℓ such that every product of

ℓ nonzero ideals of OK is contained in a proper principal ideal.

• 1+ dΓ(G ) is the smallest ℓ ∈ N with the following property:
• If q1, . . . , qℓ are pairwise coprime positive integers such that

their product q is the norm of an ideal of OK , then some

divisor t > 1 of q is the norm of a principal ideal of OK .
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Davenport Constants III

Halter-Koch 2014:

• Let ∆ ∈ Z be not a square, ∆ ≡ 0 or 1 mod 4, and let G be
the class group of non-negative de�nite primitive integral
binary quadratic forms of discriminant ∆. Then 1+ d±(G ) is
the smallest ℓ ∈ N with the following property:

• If q1, . . . , qℓ are pairwise coprime positive integers such that

their product q is propertly represented by some class of G ,

then some divisor t > 1 of q is represented by the principal

class of the discrimant ∆.

WHY?
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Sets of Lengths in Monoids

Monoid H: comm., cancellative semigroup with 1H .

• If a = u1 · . . . · uk where u1, . . . , uk ∈ A(H), then k is

called the length of the factorization, and

• LH(a) = {k | a has a factorization of length k} ⊂ N
is the length set of a.

• H is half-factorial if |L(a)| = 1 for all a ∈ H.

• L(H) = {L(a) | a ∈ H} is the system of all length sets

If a = u1 · . . . · uk = v1 · . . . · vℓ, then

aN = (u1 · . . . · uk)i (v1 · . . . · vℓ)N−i for all i ∈ [0,N] .

FACT. Either H is half-factorial or

for every N ∈ N there is aN ∈ H with |L(aN)| > N.
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Transfer Homomorphisms

Halter-Koch 1997:

A monoid homomorphism θ : H → B is a transfer homomorphism if

• θ is surjective up to units; only units are mapped onto units.

• θ allows to lift factorizations: if θ(a) = BC , then there are

b, c ∈ H such that θ(b) ≃ B , θ(c) ≃ C , and a = bc .

Philosophy: H is the object of interest and B is simpler than H.

Transfer homomorphisms allow to pull back arithmetic properties

from B to H. In particular,

• LH(a) = LB
(
θ(a)

)
for all a ∈ H.

• L(H) = L(B).
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Divisor Theories I

Concept of divisor theory: origins of alg. number theory,

Borevic-Safarevic, Cli�ord, Skula, Gundlach, Halter-Koch

A monoid homomorphism φ : H → D is said to be a

• divisor homomorphism if, for all a, b ∈ H,

a | b in H if and only if φ(a) |φ(b) in D .

• divisor theory if
• φ is a divisor homomorphism,
• D = F(P) is free abelian,
• For every p ∈ P, there are a1, . . . , am ∈ H such that

p = gcd
(
φ(a1), . . . , φ(am)

)
.
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Divisor Theories II: Classic Example

Let K be an algebraic number �eld and OK its ring of integers.

Then

• O•
K = (OK \ {0}) is a monoid.

• Since OK is Dedekind,

φ :

{
O•

K → I∗(OK ) = F(spec•(OK ))

a 7→ aOK

is a divisor theory.
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A transfer homomorphism from OK to a

monoid of zero-sum sequences

Let φ : O•
K → I∗(OK ), φ(a) = aOK for all a ∈ O•

K

O•
K −−−−→ I∗(OK )

β

y yβ̃

B(G ) −−−−→ F(G )

Let β̃ map ideals to the sequence of ideal classes:

I = P1 · . . . · Pℓ ∈ I∗(OK ) to β(I ) = [P1] · . . . · [Pℓ] ∈ F(G )

and, by de�nition of the class group, we have

• I is a principal ideal ⇐⇒ β(I ) is a zero-sum sequence.

• β is a transfer homomorphism.
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Krull Monoids

A monoid is Krull if the following equivalent conditions hold.

(a) H satis�es the ACC on v -ideals and
is completely integrally closed.

(b) H satis�es the ACC on v -ideals and
every non-empty v -ideal is v -invertible.

(c) The map ∂ : H → I∗
v (H) is a divisor theory.

(d) H has a divisor theory.

(e) There is a divisor homomorphism φ : H → F(P).

FACT. Every Krull monoid allows a

transfer homomorphism to a monoid of zero-sum sequences.
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Transfer homomorphisms to

monoids of weighted zero-sum sequences I

Let K be a Galois algebraic number �eld with

• ring of integers OK , class group G , Galois group Γ,

• N : I∗(OK ) → N the absolute norm, and

• the norm monoid N(HK ) = {N(aOK ) : a ∈ O•
K}.

(Schmid et al.) There is a transfer homomorphism

θ : N(HK ) → BΓ(G ) .
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Transfer homomorphisms to

monoids of weighted zero-sum sequences II

Similar transfer results exist for

• Galois invariant orders in algebraic number �elds.

• Monoids of totally positive elements in Galois invariant orders.

• Monoids of elements representable by certain binary quadratic

forms

• Norm monoids: recently studied by Coykendall+Hasenauer).

See the References.
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Finitely generated and ACCs

FACT. B(G ) is Krull and
it is �nitely generated if and only if G is �nite.

Theorem

1. B±(G ) is �nitely generated if and only if G is �nite.

2. B±(G ) satis�es the ACC on v -ideals if and only if

G is the direct sum of an elem. 2-group and a �nite group.

3. The following are equivalent.
• B±(G ) is Krull.
• B±(G ) is completely integrally closed
• B(G ) allows a transfer hom. to a Krull monoid.
• G is an elementary 2-group.
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The Isomorphism Problem I

Theorem

Let G and G ′ be abelian groups.

Then the groups are isomorphic if and only if

the monoids B(G ) and B(G ′) are isomorphic.
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The Isomorphism Problem II

Theorem

Let G and G ′ be abelian groups, and suppose that G is a direct

sum of cyclic groups.

Then the groups are isomorphic if and only if

the monoids B±(G ) and B±(G
′) are isomorphic.

• There are isomorphisms between the monoids which do not

stem from group isomorphisms.

• No groups are known for which the conclusion does not hold.
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Unions of Sets of Lengths and Sets of Distances I

If L = {m0, . . . ,mk} ⊂ Z with m0 < . . . < mk , then

∆(L) = {mi −mi−1 : i ∈ [1, k]} ⊂ N

is the set of distances of L, and

∆(H) =
⋃
a∈H

∆
(
L(a)

)
⊂ N

the set of distances of H. For k ∈ N, we call

Uk(H) =
⋃

k∈L(a)

L(a)

= {ℓ ∈ N | there is an equation u1 · . . . · uk = v1 · . . . · vℓ}

the union of length sets containing k .
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Unions .. and Sets of Distances II

Theorem

Let G be a �nite abelian group.

The monoids B(G ) and B±(G ) have the foll. property.

1. The set of distances is an interval with minimum 1 and with

max∆
(
B(G )

)
≤ D(G )− 2 and max∆

(
B±(G )

)
≤ D±(G )− 2.

2. For all k ∈ N, the unions Uk(·) are �nite intervals.

These results do not hold true for general

• Dedekind domains,

• orders in number �elds,

• numerical monoids.
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The Structure of Length Sets in �nitely generated Monoids

Theorem (Freiman, G., Halter-Koch, Kainrath)

Let H be a �nitely generated monoid.

There is a bound M and a �nite set ∆∗(H) such that

every length set L(a) is an AAMP with di�erence d ∈ ∆∗(H) and
bound M, where

∆∗(H) = {min∆(S) : S is a divisor-closed submonoid of H} .

• If H = B(G ), then S = B(G0) for some G0 ⊂ G .

• If H = B±(G ), then S = B±(G0) for some G0 ⊂ G .

W.Schmid 2009 This description is best possible.
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In�nite Abelian Groups

Theorem (G.+Kainrath 2024)

Let G be an in�nite abelian group.

For every �nite nonempty subset L∗ ⊂ N≥2,

there is a zero-sum sequence S ∈ B(G ) such that

LB(G)(S) = LB±(G)(S) = L∗ .

Similar realization results hold true for rings of integer-valued

polynomials, such as

Int(Z) = {f ∈ Q[X ] : f (Z) ⊂ Z} ⊂ Q[X ] .
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Characterizations of Class Groups

Classic Philosophy in Algebraic Number Theory

The class group determines the arithmetic.

This was turned into results by the machinery of transfer hom's.

Narkiewicz 1974: Inverse problem

Does the arithmetic determine the class group?

• First a�rmative answers were given in the 1980s.

• BUT: Which arithmetical properties should be used in the

characterization?

• The best investigated properties are length sets.

• Are length sets su�cient to do the characterization ?
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The Characterization Problem

Recall: L(H) = {L(a) : a ∈ H}.
The Characterization Problem for B(G ).

Given two �nite abelian groups G and G ′ such that

L
(
B(G )

)
= L

(
B(G ′)

)
. Does it follow that G ∼= G ′?

The Characterization Problem for B±(G ).

Given two �nite abelian groups G and G ′ such that

L
(
B±(G )

)
= L

(
B±(G

′)
)
. Does it follow that G ∼= G ′?

A necessary condition for an a�rmative answer holds true.

• B(G ) ∼= B(G ′) ⇐⇒ G ∼= G ′.

• B±(G ) ∼= B±(G
′) ⇐⇒ G ∼= G ′.
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Comparing Systems of Length Sets

Let G be a �nite abelian group.

• There are (up to isomorphism) only �nitely many �nite abelian

groups G ′ such that

L
(
B(G )

)
= L

(
B(G ′)

)
.

• There are (up to isomorphism) only �nitely many �nite abelian

groups G ′ such that

L
(
B±(G )

)
= L

(
B±(G

′)
)
.
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On the Characterization Problem for B(G )

Gao+G.+Schmid+Zhong

Suppose that L
(
B(G )

)
= L

(
B(G ′)

)
.

Then G and G ′ are isomorphic in each of the following cases :

1. G = Cn1 ⊕ Cn2 , where

n1, n2 ∈ N with n1 | n2 and n1 + n2 > 4.

2. G = C r
n , where r , n ∈ N are as follows :

• r ≤ n − 3
• r ≥ n − 1 and n is a prime power.
• ongoing work .....

Crucial ingredients.

• We have D(Cn1 ⊕ Cn2) = n1 + n2 − 1 and the structure of the

minimal zero-sum sequences of maximal length is known.

• Information on ∆∗(B(G )
)
.
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On the Characterization Problem for B±(G )

Theorem (Fabsits+G.+Reinhart+Zhong)

Let G be cyclic of odd order.

If L
(
B±(G )

)
= L

(
B±(G

′)
)
, then G and G ′ are isomorphic.

Further new results by W. Schmid et al.: see the References.



Weighted Zero-Sums Rings and Factorizations Algebraic Properties Arithmetic Properties References

Outline

Weighted Zero-Sums

Rings and Factorizations

Algebraic Properties

Arithmetic Properties

References



Weighted Zero-Sums Rings and Factorizations Algebraic Properties Arithmetic Properties References

References

1. S. Boukheche, K. Merito, O. Ordaz, and W.A. Schmid, Monoids of sequences over �nite abelian
groups de�ned via zero-sums with respect to a given set of weights .... , Commun. Algebra 50

(2022), 4195 � 4217.

2. F. Fabsits, A. Geroldinger, A. Reinhart, and Q. Zhong, On monoids of plus-minus weighted
zero-sum sequences: The isomorphism problem and the characterization problem, J.
Commutative Algebra 16 (2024), 1 � 23.

3. A. Geroldinger, F. Halter-Koch, and Q. Zhong, On monoids of weighted zero-sum sequences and
applications to norm monoids in Galois number �elds and binary quadratic forms, Acta Math.
Hung. 168 (2022), 144 � 185.

4. A. Geroldinger and F. Kainrath, On Sets of Lengths of Plus-Minus Weighted Zero-Sum
Sequences, arXiv:2404.17258.

5. K. Merito, O. Ordaz, and W.A. Schmid, On the set of minimal distances of the monoid of
plus-minus weighted zero-sum sequences and .., manuscript.

https://www.tandfonline.com/doi/full/10.1080/00927872.2022.2058009
https://www.tandfonline.com/doi/full/10.1080/00927872.2022.2058009
https://imsc.uni-graz.at/geroldinger/124-on-monoids-of-plus-minus.pdf
https://imsc.uni-graz.at/geroldinger/124-on-monoids-of-plus-minus.pdf
https://link.springer.com/epdf/10.1007/s10474-022-01270-x?sharing_token=inmLt07qYzeW9teFl4WUXve4RwlQNchNByi7wbcMAY65lgetxBtoN7kz6YFgXMOIN3VYJEiJgH_uVENY48k6SAypCOzmU_7iAlxZf_maV-V5wOXMmM87H3IvNUAvhm5NUe8i0RkpQ_3x6RF6-iQlo36kuGmWUA7sudWdOPID38c=
https://link.springer.com/epdf/10.1007/s10474-022-01270-x?sharing_token=inmLt07qYzeW9teFl4WUXve4RwlQNchNByi7wbcMAY65lgetxBtoN7kz6YFgXMOIN3VYJEiJgH_uVENY48k6SAypCOzmU_7iAlxZf_maV-V5wOXMmM87H3IvNUAvhm5NUe8i0RkpQ_3x6RF6-iQlo36kuGmWUA7sudWdOPID38c=
https://arxiv.org/abs/2404.17258
https://arxiv.org/abs/2404.17258


Weighted Zero-Sums Rings and Factorizations Algebraic Properties Arithmetic Properties References

Conference Announcement

Algebra Conference

Rings and Polynomials 2025

July 14 � 19, 2025

Graz University of Technology, Austria

http://integer-valued.org/rings2025/

	Weighted Zero-Sums
	

	Rings and Factorizations
	

	Algebraic Properties
	

	Arithmetic Properties
	

	References
	


