GRAZ SCHOOL OF DISCRETE MATHEMATICS

U & KFU GRAZ **AUSTRIA**

On Monoids of Weighted Zero-Sum Sequences

Alfred Geroldinger

International Meeting on Numerical Semigroups

Jerez de la Frontera, July 2024

[Weighted Zero-Sums](#page-1-0)

[Rings and Factorizations](#page-6-0)

[Algebraic Properties](#page-17-0)

[Arithmetic Properties](#page-21-0)

[References](#page-31-0)

Let G be an additive abelian group, $G_0 \subset G$ be a subset, and $\Gamma \subset \text{End}(G)$ of a subset of the endomorphism group.

- A sequence $S = g_1 \cdot \ldots \cdot g_\ell$ over G_0 : finite, unordered sequence of terms from G_0 , repetition allowed;
- \bullet $|S| = \ell$ denotes its length and $\sigma(S) = g_1 + \ldots + g_\ell$ its sum.
- Sequences are considered as elements of the free abelian monoid $\mathcal{F}(G_0)$.
- $\sigma_{\Gamma}(S) = {\gamma_1(g_1) + \ldots + \gamma_{\ell}(g_{\ell}) : \gamma_1, \ldots, \gamma_{\ell} \in \Gamma}$ the set of Γ-weighted sums of S.
- $\Sigma(S) = \{ \sigma(T) : 1 \neq T \in \mathcal{F}(G), T \mid S \}.$
- $\bullet \Sigma_{\Gamma}(S) = \bigcup_{1 \neq \tau \, | \, S} \sigma_{\Gamma}(\tau).$

Monoids of Weighted Zero-Sum Sequences

A sequence $S \in \mathcal{F}(G_0)$ is called

- a zero-sum sequence if $\sigma(S) = 0$,
- zero-sum free if $0 \notin \Sigma(S)$,
- a Γ-weighted zero-sum sequence if $0 \in \sigma_{\Gamma}(S)$, and
- Γ-weighted zero-sum free if $0 \notin \Sigma_{\Gamma}(S)$.

We denote by

- $\mathcal{B}(G_0)$ the monoid of zero-sum sequences over G_0 ,
- $\mathcal{B}_{\Gamma}(G_0)$ the monoid of Γ-weighted zero-sum sequences over G_0 ,
- $\mathcal{B}_{+}(G_0)$ the monoid of plus-minus weighted zero-sum sequences over G_0 , in case that $\Gamma = \{id, -id\}$.

Weighted zero-sums are studied since 2006: Sukumar das Adhikari.

Davenport Constants

- $\bullet\,$ D $(G):=\mathsf{D}\big(\mathcal{B}(G)\big)$ is the maximal length of an irreducible element in $\mathcal{B}(G)$; $d(G)$ is the maximal length of a zero-sum free sequence.
- $\bullet\;\; \mathsf{D}_\mathsf{\Gamma}(G) := \mathsf{D}\big(\mathcal{B}_\mathsf{\Gamma}(G)\big)$ is the maximal length of an irreducible element in $\mathcal{B}_{\Gamma}(G)$; $d_{\Gamma}(G)$ is
- $\bullet\;\; \mathsf{D}_\pm(\mathsf{G}) := \mathsf{D}\big(\mathcal{B}_\pm(\mathsf{G})\big)$ is the maximal length of an irreducible element in $\mathcal{B}_+(G)$; $d_+(G)$ is

The Davenport constant I

The Davenport constant $D(G)$ is the maximal length of a minimal zero-sum sequence over G , thus

 $\mathsf{D}(\mathsf{G})=\max\{\ell\mid S=g_1\cdot\ldots\cdot g_\ell$ is an irreducible element of $\mathcal{B}(\mathsf{G})\}$.

Let

$$
G = C_{n_1} \oplus \ldots \oplus C_{n_r} \quad \text{with} \quad 1 < n_1 \mid \ldots \mid n_r
$$

$$
\bullet \ \ 1+\sum_{i=1}^r (n_i-1)\leq \mathsf{D}(\mathsf{G}).
$$

- 1960s: Equality holds for p-groups, for $r \leq 2$, and for others.
- For every $r \geq 4$ there are infinitely many groups G of rank r for which inequality holds.
- OPEN PROBLEM Determine D(G) in terms of (n_1, \ldots, n_r) . $D(C_n \oplus C_n \oplus C_n) =?$

[Weighted Zero-Sums](#page-1-0)

[Rings and Factorizations](#page-6-0)

[Algebraic Properties](#page-17-0)

[Arithmetic Properties](#page-21-0)

[References](#page-31-0)

Let K be an algebraic number field with class group G , ring of integers \mathcal{O}_K , and Galois group Γ . If $[K:\mathbb{Q}]=2$, then $\Gamma = \{\mathrm{id}, \tau\},\$ with $\tau(g) = -g$ for $g \in G$, whence $D_{\Gamma}(G) = D_{\pm}(G)$. Rogers 1962: $D(G)$ is the maximal number of prime ideals occurring in the the prime ideal factorization of an irreducible element of \mathcal{O}_K .

Halter-Koch 2014:

- $1 + d(G) = D(G)$ is the smallest ℓ such that every product of ℓ nonzero ideals of \mathcal{O}_K is contained in a proper principal ideal.
- $1 + d_{\Gamma}(G)$ is the smallest $\ell \in \mathbb{N}$ with the following property:
	- If q_1, \ldots, q_ℓ are pairwise coprime positive integers such that their product q is the norm of an ideal of \mathcal{O}_K , then some divisor $t > 1$ of q is the norm of a principal ideal of \mathcal{O}_K .

[Weighted Zero-Sums](#page-1-0) [Rings and Factorizations](#page-6-0) [Algebraic Properties](#page-17-0) [Arithmetic Properties](#page-21-0) [References](#page-31-0) 8000

 000000000

 800

800000000

80

Davenport Constants III

Halter-Koch 2014:

- $\bullet\,$ Let $\Delta\in\mathbb{Z}$ be not a square, $\Delta\equiv 0$ or 1 mod 4, and let G be the class group of non-negative definite primitive integral binary quadratic forms of discriminant Δ . Then $1 + d_+(G)$ is the smallest $\ell \in \mathbb{N}$ with the following property:
	- If q_1, \ldots, q_ℓ are pairwise coprime positive integers such that their product q is propertly represented by some class of G , then some divisor $t > 1$ of q is represented by the principal class of the discrimant ∆.

WHY?

Sets of Lengths in Monoids

Monoid H: comm, cancellative semigroup with 1_H .

- If $a = u_1 \cdot \ldots \cdot u_k$ where $u_1, \ldots, u_k \in \mathcal{A}(H)$, then k is called the length of the factorization, and
- L_H(a) = {k | a has a factorization of length k } $\subset \mathbb{N}$ is the length set of a.
- H is half-factorial if $|L(a)| = 1$ for all $a \in H$.
- $\mathcal{L}(H) = \{L(a) | a \in H\}$ is the system of all length sets

If $a = u_1 \cdot \ldots \cdot u_k = v_1 \cdot \ldots \cdot v_{\ell}$, then

$$
a^N = (u_1 \cdot \ldots \cdot u_k)^i (v_1 \cdot \ldots \cdot v_\ell)^{N-i} \text{ for all } i \in [0, N].
$$

FACT. Either H is half-factorial or for every $N \in \mathbb{N}$ there is $a_N \in H$ with $|L(a_N)| > N$.

Transfer Homomorphisms

Halter-Koch 1997:

A monoid homomorphism $\theta: H \to B$ is a transfer homomorphism if

- \bullet θ is surjective up to units; only units are mapped onto units.
- θ allows to lift factorizations: if $\theta(a) = BC$, then there are $b, c \in H$ such that $\theta(b) \simeq B$, $\theta(c) \simeq C$, and $a = bc$.

Philosophy: H is the object of interest and B is simpler than H .

Transfer homomorphisms allow to pull back arithmetic properties from B to H In particular,

•
$$
L_H(a) = L_B(\theta(a))
$$
 for all $a \in H$.

• $\mathcal{L}(H) = \mathcal{L}(B)$.

Concept of divisor theory: origins of alg. number theory, Borevic-Safarevic, Clifford, Skula, Gundlach, Halter-Koch

- A monoid homomorphism $\varphi: H \to D$ is said to be a
	- divisor homomorphism if, for all $a, b \in H$,

 $a | b$ in H if and only if $\varphi(a) | \varphi(b)$ in D.

- divisor theory if
	- φ is a divisor homomorphism,
	- $D = \mathcal{F}(P)$ is free abelian,
	- For every $p \in P$, there are $a_1, \ldots, a_m \in H$ such that $p=\gcd\big(\varphi(a_1),\ldots,\varphi(a_m)\big)$.

Let K be an algebraic number field and \mathcal{O}_K its ring of integers. Then

- $\bullet\,\,\mathcal{O}_{\mathcal{K}}^{\bullet}=(\mathcal{O}_{\mathcal{K}}\setminus\{0\})$ is a monoid.
- Since \mathcal{O}_K is Dedekind,

$$
\varphi \colon \left\{ \begin{array}{ccc} \mathcal{O}_{\mathcal{K}}^{\bullet} & \to & \mathcal{I}^*(\mathcal{O}_{\mathcal{K}}) = \mathcal{F}(\mathrm{spec}^{\bullet}(\mathcal{O}_{\mathcal{K}})) \\ a & \mapsto & a\mathcal{O}_{\mathcal{K}} \end{array} \right.
$$

is a divisor theory.

Let
$$
\varphi: \mathcal{O}_{K}^{\bullet} \to \mathcal{I}^{*}(\mathcal{O}_{K}), \varphi(a) = a\mathcal{O}_{K}
$$
 for all $a \in \mathcal{O}_{K}^{\bullet}$

Let β map ideals to the sequence of ideal classes:

 $I = P_1 \cdot \ldots \cdot P_\ell \in \mathcal{I}^*(\mathcal{O}_\mathcal{K})$ to $\beta(I) = [P_1] \cdot \ldots \cdot [P_\ell] \in \mathcal{F}(\mathcal{G})$

and, by definition of the class group, we have

- I is a principal ideal \iff $\beta(I)$ is a zero-sum sequence.
- β is a transfer homomorphism.

Krull Monoids

A monoid is Krull if the following equivalent conditions hold.

- (a) H satisfies the ACC on v -ideals and is completely integrally closed.
- (b) H satisfies the ACC on v-ideals and every non-empty v-ideal is v-invertible.
- (c) The map $\partial\colon H\to \mathcal I_\mathsf{v}^*(H)$ is a divisor theory.
- (d) H has a divisor theory.
- (e) There is a divisor homomorphism $\varphi: H \to \mathcal{F}(P)$.
- FACT. Every Krull monoid allows a transfer homomorphism to a monoid of zero-sum sequences.

Let K be a Galois algebraic number field with

- ring of integers \mathcal{O}_K , class group G, Galois group Γ,
- $\bullet\;{\sf N}: {\mathcal I}^{*}({\mathcal O}_{{\mathcal K}})\to {\mathbb N}$ the absolute norm, and
- the norm monoid $N(\mathcal{H}_K) = \{N(a\mathcal{O}_K): a \in \mathcal{O}_K^{\bullet}\}.$

(Schmid et al.) There is a transfer homomorphism

 θ : N(H_K) \rightarrow B_Γ(G).

Similar transfer results exist for

- Galois invariant orders in algebraic number fields.
- Monoids of totally positive elements in Galois invariant orders.
- Monoids of elements representable by certain binary quadratic forms
- Norm monoids: recently studied by Coykendall+Hasenauer).

See the References.

[Weighted Zero-Sums](#page-1-0)

[Rings and Factorizations](#page-6-0)

[Algebraic Properties](#page-17-0)

[Arithmetic Properties](#page-21-0)

[References](#page-31-0)

Finitely generated and ACCs

FACT. $\mathcal{B}(G)$ is Krull and

it is finitely generated if and only if G is finite.

Theorem

- 1. $\mathcal{B}_+(G)$ is finitely generated if and only if G is finite.
- 2. $\mathcal{B}_{\pm}(G)$ satisfies the ACC on v-ideals if and only if G is the direct sum of an elem. 2-group and a finite group.
- 3. The following are equivalent.
	- $\mathcal{B}_+(G)$ is Krull.
	- $\mathcal{B}_{+}(G)$ is completely integrally closed
	- $\mathcal{B}(G)$ allows a transfer hom. to a Krull monoid.
	- G is an elementary 2-group.

The Isomorphism Problem I

Theorem

Let G and G' be abelian groups. Then the groups are isomorphic if and only if the monoids $\mathcal{B}(G)$ and $\mathcal{B}(G')$ are isomorphic.

The Isomorphism Problem II

Theorem

Let G and G' be abelian groups, and suppose that G is a direct sum of cyclic groups. Then the groups are isomorphic if and only if the monoids $\mathcal{B}_{\pm}(\mathsf{G})$ and $\mathcal{B}_{\pm}(\mathsf{G}')$ are isomorphic.

- There are isomorphisms between the monoids which do not stem from group isomorphisms.
- No groups are known for which the conclusion does not hold.

[Weighted Zero-Sums](#page-1-0)

[Rings and Factorizations](#page-6-0)

[Algebraic Properties](#page-17-0)

[Arithmetic Properties](#page-21-0)

[References](#page-31-0)

Unions of Sets of Lengths and Sets of Distances I

If
$$
L = \{m_0, \ldots, m_k\} \subset \mathbb{Z}
$$
 with $m_0 < \ldots < m_k$, then

$$
\Delta(L)=\{m_i-m_{i-1}\colon i\in [1,k]\}\subset\mathbb{N}
$$

is the set of distances of L, and

$$
\Delta(H) = \bigcup_{a \in H} \Delta(L(a)) \subset \mathbb{N}
$$

the set of distances of H. For $k \in \mathbb{N}$, we call

$$
\mathcal{U}_k(H) = \bigcup_{k \in L(a)} L(a)
$$

= $\{ \ell \in \mathbb{N} \mid \text{there is an equation } u_1 \cdot \ldots \cdot u_k = v_1 \cdot \ldots \cdot v_{\ell} \}$

the union of length sets containing k .

Theorem

Let G be a finite abelian group.

The monoids $\mathcal{B}(G)$ and $\mathcal{B}_+(G)$ have the foll. property.

- 1. The set of distances is an interval with minimum 1 and with $\mathsf{max}\, \Delta\big(\mathcal{B}(\mathsf{G})\big) \le \mathsf{D}(\mathsf{G}) - 2$ and $\mathsf{max}\, \Delta\big(\mathcal{B}_{\pm}(\mathsf{G})\big) \le \mathsf{D}_{\pm}(\mathsf{G}) - 2.$
- 2. For all $k \in \mathbb{N}$, the unions $\mathcal{U}_k(\cdot)$ are finite intervals.

These results do not hold true for general

- Dedekind domains,
- orders in number fields,
- numerical monoids.

The Structure of Length Sets in finitely generated Monoids

Theorem (Freiman, G., Halter-Koch, Kainrath)

Let H be a finitely generated monoid. There is a bound M and a finite set $\Delta^*(H)$ such that every length set $L(a)$ is an $AAMP$ with difference $d \in \Delta^*(H)$ and bound M, where

 $\Delta^*(H) = \{\mathsf{min}\, \Delta(S) \colon S \text{ is a divisor-closed submonoid of } H\}$.

- If $H = \mathcal{B}(G)$, then $S = \mathcal{B}(G_0)$ for some $G_0 \subset G$.
- If $H = \mathcal{B}_+(G)$, then $S = \mathcal{B}_+(G_0)$ for some $G_0 \subset G$.

W.Schmid 2009 This description is best possible.

Infinite Abelian Groups

Theorem (G.+Kainrath 2024)

Let G be an infinite abelian group. For every finite nonempty subset $L^* \subset N_{\geq 2}$, there is a zero-sum sequence $S \in \mathcal{B}(G)$ such that

$$
L_{\mathcal{B}(G)}(S) = L_{\mathcal{B}_{\pm}(G)}(S) = L^*.
$$

Similar realization results hold true for rings of integer-valued polynomials, such as

$$
Int(\mathbb{Z}) = \{f \in \mathbb{Q}[X] \colon f(\mathbb{Z}) \subset \mathbb{Z}\} \subset \mathbb{Q}[X].
$$

Classic Philosophy in Algebraic Number Theory

The class group determines the arithmetic.

This was turned into results by the machinery of transfer hom's. Narkiewicz 1974: Inverse problem

Does the arithmetic determine the class group?

- \bullet First affirmative answers were given in the 1980s.
- BUT: Which arithmetical properties should be used in the characterization?
- The best investigated properties are length sets.
- Are length sets sufficient to do the characterization?

The Characterization Problem

Recall: $\mathcal{L}(H) = \{L(a): a \in H\}.$

The Characterization Problem for $\mathcal{B}(G)$.

Given two finite abelian groups G and G' such that $\mathcal{L}\big(\mathcal{B}(\mathit{G})\big) = \mathcal{L}\big(\mathcal{B}(\mathit{G}')\big)$. Does it follow that $\mathit{G} \cong \mathit{G}'$?

The Characterization Problem for $\mathcal{B}_{\pm}(G)$.

Given two finite abelian groups G and G' such that $\mathcal{L}\big(\mathcal{B}_{\pm}(\mathsf{G})\big) = \mathcal{L}\big(\mathcal{B}_{\pm}(\mathsf{G}')\big)$. Does it follow that $\mathsf{G}\cong \mathsf{G}'?$

A necessary condition for an affirmative answer holds true.

•
$$
\mathcal{B}(G) \cong \mathcal{B}(G')
$$
 \iff $G \cong G'$.

•
$$
\mathcal{B}_{\pm}(G) \cong \mathcal{B}_{\pm}(G') \iff G \cong G'
$$

Let G be a finite abelian group.

• There are (up to isomorphism) only finitely many finite abelian groups G' such that

$$
\mathcal{L}\big(\mathcal{B}(\mathsf{G})\big)=\mathcal{L}\big(\mathcal{B}(\mathsf{G}')\big)\,.
$$

• There are (up to isomorphism) only finitely many finite abelian groups G' such that

$$
\mathcal{L}\big(\mathcal{B}_\pm(\mathit{G})\big)=\mathcal{L}\big(\mathcal{B}_\pm(\mathit{G}')\big)\,.
$$

On the Characterization Problem for $\mathcal{B}(G)$

Gao+G.+Schmid+Zhong Suppose that $\mathcal{L}(\mathcal{B}(G)) = \mathcal{L}(\mathcal{B}(G'))$. Then G and G' are isomorphic in each of the following cases:

1.
$$
G = C_{n_1} \oplus C_{n_2}
$$
, where
\n $n_1, n_2 \in \mathbb{N}$ with $n_1 | n_2$ and $n_1 + n_2 > 4$.

2.
$$
G = C_n^r
$$
, where $r, n \in \mathbb{N}$ are as follows:

- $r < n-3$
- $r \ge n 1$ and n is a prime power.
- ongoing work

Crucial ingredients.

- $\bullet\,$ We have $\mathsf{D}(\mathsf{C}_{n_1} \oplus \mathsf{C}_{n_2}) = n_1 + n_2 1$ and the structure of the minimal zero-sum sequences of maximal length is known.
- Information on $\Delta^*(\mathcal B(G))$.

Theorem (Fabsits+G.+Reinhart+Zhong)

Let G be cyclic of odd order.

If $\mathcal{L}(\mathcal{B}_{\pm}(\mathsf{G}))=\mathcal{L}\big(\mathcal{B}_{\pm}(\mathsf{G}')\big)$, then $\mathsf G$ and G' are isomorphic.

Further new results by W. Schmid et al.: see the References.

[Weighted Zero-Sums](#page-1-0)

[Rings and Factorizations](#page-6-0)

[Algebraic Properties](#page-17-0)

[Arithmetic Properties](#page-21-0)

[References](#page-31-0)

- 1. S. Boukheche, K. Merito, O. Ordaz, and W.A. Schmid, Monoids of sequences over finite abelian [groups dened via zero-sums with respect to a given set of weights](https://www.tandfonline.com/doi/full/10.1080/00927872.2022.2058009) , Commun. Algebra 50 (2022) , 4195 - 4217.
- 2. F. Fabsits, A. Geroldinger, A. Reinhart, and Q. Zhong, [On monoids of plus-minus weighted](https://imsc.uni-graz.at/geroldinger/124-on-monoids-of-plus-minus.pdf) [zero-sum sequences: The isomorphism problem and the characterization problem,](https://imsc.uni-graz.at/geroldinger/124-on-monoids-of-plus-minus.pdf) J. Commutative Algebra 16 (2024) , $1 - 23$.
- 3. A. Geroldinger, F. Halter-Koch, and Q. Zhong, [On monoids of weighted zero-sum sequences and](https://link.springer.com/epdf/10.1007/s10474-022-01270-x?sharing_token=inmLt07qYzeW9teFl4WUXve4RwlQNchNByi7wbcMAY65lgetxBtoN7kz6YFgXMOIN3VYJEiJgH_uVENY48k6SAypCOzmU_7iAlxZf_maV-V5wOXMmM87H3IvNUAvhm5NUe8i0RkpQ_3x6RF6-iQlo36kuGmWUA7sudWdOPID38c=) applications to norm monoids in Galois number fields and binary quadratic forms, Acta Math. Hung. 168 (2022), $144 - 185$.
- 4. A. Geroldinger and F. Kainrath, [On Sets of Lengths of Plus-Minus Weighted Zero-Sum](https://arxiv.org/abs/2404.17258) [Sequences,](https://arxiv.org/abs/2404.17258) arXiv:2404.17258.
- 5. K. Merito, O. Ordaz, and W.A. Schmid, On the set of minimal distances of the monoid of plus-minus weighted zero-sum sequences and .., manuscript.

Conference Announcement

Algebra Conference

[Rings and Polynomials 2025](http://integer-valued.org/rings2025/)

July 14 - 19, 2025

Graz University of Technology, Austria