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Mario González Sánchez Projective monomial curves and their affine projections

a0 = 0 < a1 < · · · < an−1 < an = d a sequence of
relatively prime integers

a0 = 0 a1 ai an−1 an = d
A1 = {a1, . . . , an} ⊂ N



Framework
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a0 = 0 < a1 < · · · < an−1 < an = d a sequence of
relatively prime integers

a0 = 0 a1 ai an−1 an = d
A1 = {a1, . . . , an} ⊂ N

For i = 0, . . . , n− 1,
ai = (ai, d− ai)

a0 = (0, d)

a1

ai = (ai, d − ai)

an−1

an = (d, 0)

A = {a0, . . . ,an} ⊂ N2
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vectors, consider the monoid (semigroup) spanned by B

SB := ⟨b1, . . . , bn⟩ = {α1b1+· · ·+αnbn |α1, . . . , αn ∈ N} ⊂ Nm
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Mario González Sánchez Projective monomial curves and their affine projections

◦ In general, given B = {b1, . . . , bn} ⊂ Nm, a set of nonzero
vectors, consider the monoid (semigroup) spanned by B

SB := ⟨b1, . . . , bn⟩ = {α1b1+· · ·+αnbn |α1, . . . , αn ∈ N} ⊂ Nm

Fix a field k and consider the semigroup algebra k[SB]



Betti numbers (I)
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◦ In general, given B = {b1, . . . , bn} ⊂ Nm, a set of nonzero
vectors, consider the monoid (semigroup) spanned by B

SB := ⟨b1, . . . , bn⟩ = {α1b1+· · ·+αnbn |α1, . . . , αn ∈ N} ⊂ Nm

Fix a field k and consider the semigroup algebra k[SB]

◦ The toric ideal determined by B: IB = kerφB
φB : k[x] −→ k[t] induced by xi 7→ tbi .

k[SB] ≃ k[x]/IB

◦ IB is a SB-homogeneous binomial ideal

degSB
(xi) := bi ; degSB

(xα) := α1b1+ · · ·+αnbn ∈ SB
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◦ One can consider a minimal SB-graded free resolution of
k[SB] as SB-graded k[x]-module

F : 0 −→ Fp −→ · · · −→ F0 −→ k[SB] −→ 0
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◦ k[SB] is Cohen-Macaulay when dim k[SB] = depth k[SB].
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Mario González Sánchez Projective monomial curves and their affine projections

◦ One can consider a minimal SB-graded free resolution of
k[SB] as SB-graded k[x]-module

F : 0 −→ Fp −→ · · · −→ F0 −→ k[SB] −→ 0

◦ The i-th Betti number of k[SB] is βi(k[SB]) = rank(Fi);

the Betti sequence of k[SB] is (βi(k[SB]) ; 0 ≤ i ≤ p).

◦ k[SB] is Cohen-Macaulay when dim k[SB] = depth k[SB].

S1 = ⟨a1, . . . , an⟩
k[S1] ≃ k[x1, . . . , xn]/IA1

k[S1] is CM

S = ⟨a1, . . . ,an⟩
k[S] ≃ k[x0, . . . , xn]/IA

k[S] can be CM or not



Betti numbers (II)
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k[SB] as SB-graded k[x]-module
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◦ One can consider a minimal SB-graded free resolution of
k[SB] as SB-graded k[x]-module

F : 0 −→ Fp −→ · · · −→ F0 −→ k[SB] −→ 0

◦ The i-th Betti number of k[SB] is βi(k[SB]) = rank(Fi);

the Betti sequence of k[SB] is (βi(k[SB]) ; 0 ≤ i ≤ p).

◦ k[SB] is Cohen-Macaulay when dim k[SB] = depth k[SB].

S1 = ⟨a1, . . . , an⟩
k[S1] ≃ k[x1, . . . , xn]/IA1

k[S1] is CM

S = ⟨a1, . . . ,an⟩
k[S] ≃ k[x0, . . . , xn]/IA

k[S] can be CM or not

k[S] is the coordinate ring of a projective monomial curve, C

k[S1] is the coordinate ring of an affine monomial curve, C1
(an affine chart of C)
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The numerical semigroup S1: A1 = {5, 6, 7, 8, 9, 10}
IA1

= ⟨x1 − u5, x2 − u6, x3 − u7, x4 − u8, x5 − u9, x6 − u10⟩ ∩ k[x]

= ⟨x2
5 − x4x6, x4x5 − x3x6, . . . , x2

1 − x6⟩

Betti sequence of k[S1]: (1, 11, 30, 35, 19, 4)
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The numerical semigroup S1: A1 = {5, 6, 7, 8, 9, 10}
IA1

= ⟨x1 − u5, x2 − u6, x3 − u7, x4 − u8, x5 − u9, x6 − u10⟩ ∩ k[x]

= ⟨x2
5 − x4x6, x4x5 − x3x6, . . . , x2

1 − x6⟩

Betti sequence of k[S1]: (1, 11, 30, 35, 19, 4)

The affine semigroup S:
A = {(0, 10), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1), (10, 0)}

IA = ⟨x0 − v10, x1 − u5v5, x2 − u6v4, x3 − u7v3, x4 − u8v2, x5 − u9v

x6 − u10⟩ ∩ k[x0, . . . , x6]

Betti sequence of k[S]: (1, 11, 30, 35, 19, 4)

= ⟨x2
5 − x4x6, x4x5 − x3x6, . . . , x2

1 − x0x6⟩
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The numerical semigroup S1: A1 = {5, 6, 7, 8, 9, 10}
IA1

= ⟨x1 − u5, x2 − u6, x3 − u7, x4 − u8, x5 − u9, x6 − u10⟩ ∩ k[x]

= ⟨x2
5 − x4x6, x4x5 − x3x6, . . . , x2

1 − x6⟩

Betti sequence of k[S1]: (1, 11, 30, 35, 19, 4)

The affine semigroup S:
A = {(0, 10), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1), (10, 0)}

IA = ⟨x0 − v10, x1 − u5v5, x2 − u6v4, x3 − u7v3, x4 − u8v2, x5 − u9v

x6 − u10⟩ ∩ k[x0, . . . , x6]

Betti sequence of k[S]: (1, 11, 30, 35, 19, 4)

= ⟨x2
5 − x4x6, x4x5 − x3x6, . . . , x2

1 − x0x6⟩

0 < 1 < 3 < 4
Betti seq. of k[S1]: (1, 2, 1)
Betti seq. of k[S]: (1, 4, 4, 1)



The Problem
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Question. When
does equality hold
for all i?

βi(k[S]) ≥ βi(k[S1]) for all i

βi(k[S]) = βi(k[S1]), ∀i, ⇒ k[S] is Cohen-Macaulay

J. Saha, I. Sengupta and P. Srivastava. Betti sequence of the
projective closure of affine monomial curves. J. Symb.
Comput. 119 (2023)

[S3] Theorem. Let G be the reduced Gröbner basis of IA1 with
respect to the degree reverse lexicographic (degrevlex) order with
x1 > x2 > · · · > xn.
If k[S] is Cohen-Macaulay and xn belongs to the support of all
non-homogeneous binomials of G, then βi(k[S]) = βi(k[S1]), ∀i.
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Mario González Sánchez Projective monomial curves and their affine projections

Question. When
does equality hold
for all i?

βi(k[S]) ≥ βi(k[S1]) for all i

βi(k[S]) = βi(k[S1]), ∀i, ⇒ k[S] is Cohen-Macaulay

J. Saha, I. Sengupta and P. Srivastava. Betti sequence of the
projective closure of affine monomial curves. J. Symb.
Comput. 119 (2023)

[S3] Theorem. Let G be the reduced Gröbner basis of IA1 with
respect to the degree reverse lexicographic (degrevlex) order with
x1 > x2 > · · · > xn.
If k[S] is Cohen-Macaulay and xn belongs to the support of all
non-homogeneous binomials of G, then βi(k[S]) = βi(k[S1]), ∀i.

[S3] Condition
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In our previous example:

G = {x2
5 − x4x6, x4x5 − x3x6, x3x5 − x2x6, x2x5 − x1x6

x2
4 − x2x6, x3x4 − x1x6, x2x4 − x1x5, x2

3 − x1x5

x2x3 − x1x4, x2
2 − x1x3, x2

1 − x6}
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In our previous example:

G = {x2
5 − x4x6, x4x5 − x3x6, x3x5 − x2x6, x2x5 − x1x6

x2
4 − x2x6, x3x4 − x1x6, x2x4 − x1x5, x2

3 − x1x5

x2x3 − x1x4, x2
2 − x1x3, x2

1 − x6}

x6 belongs to the support of all non-homogeneous binomials of G
⇒ βi(k[S]) = βi(k[S1]), ∀i

We are looking for a combinatorial condition
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◦ S1 = ⟨a1, . . . , an⟩
◦ Ap1 := {y ∈ S1 | y − d /∈ S1}
◦ (Ap1,≤1) is a poset, where y ≤1 z ⇔ z − y ∈ S1.

Apery Set Ap1

◦ S = ⟨a0, . . . ,an⟩
◦ APS := {y ∈ S |y − (d, 0) /∈ S,y − (0, d) /∈ S}

◦ (APS ,≤S) is a poset, where y ≤S z ⇔ z− y ∈ S.

Apery Set APS

|Ap1| = d

|APS | ≥ d and k[S] is Cohen-Macaulay ⇔ |APS | = d

APS is always graded

Ap1 can be graded or not
Let (P,≤) be a finite poset

For y, z ∈ P , y ≺ z ⇔ y < z and
there is no w s.t. y < w < z

P is graded if there is a function
ρ : P → N s.t. ρ(z) = ρ(y) + 1 if y ≺ z
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Mario González Sánchez Projective monomial curves and their affine projections

Theorem [G3]
(ApS ,≤S) ≃ (Ap1,≤1) ⇒ βi(k[S]) = βi(k[S1]) for all i.



Main Result
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Theorem [G3]
(ApS ,≤S) ≃ (Ap1,≤1) ⇒ βi(k[S]) = βi(k[S1]) for all i.

Idea of the proof:

Proposition [G3]. The following are equivalent:

◦ The posets (Ap1,≤1) and (ApS ,≤S) are isomorphic;
◦ |APS | = d, (Ap1,≤1) is graded &
{a1, . . . , an−1} ⊂ MSG(S1).

◦ [S3] condition. (Ap1,≤1) is graded iff
Ap1 ⊂ ULF(S1)
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Ap1 = {0, 5, 6, 7, 8, 9, 11, 12, 13, 14}

APS = {(0, 0), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1), (11, 9),
(12, 8), (13, 7), (14, 6)}

0

5 6 7 8 9

12 13 1411
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Mario González Sánchez Projective monomial curves and their affine projections

Ap1 = {0, 5, 6, 7, 8, 9, 11, 12, 13, 14}

APS = {(0, 0), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1), (11, 9),
(12, 8), (13, 7), (14, 6)}

0

5 6 7 8 9

12 13 1411

5

8 7 69

0

1234
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Arithmetic sequence
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+e +e +e

Proposition [G3].
(ApS ,≤S) ≃ (Ap1,≤1) ⇐⇒ a1 > n− 2.

Example: 5 < 6 < 7 < 8 < 9 < 10

a1 = 5, n = 6

⇒ (APS ,≤S) ≃ (Ap1,≤1)

⇒ βi(k[S1]) = βi(k[S]), ∀i
The Betti seq. is (1, 11, 30, 35, 19, 4)
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a1 = 5, n = 6
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0 < a1 < a2 < · · · < ar < · · · < an−1 < an arithmetic sequence

Consider A1 = {a1, . . . , an} \ {ar} and
A = {a0,a1, . . . ,an} \ {ar}

r ∈ {2, . . . , n− 1}

ApS ≃ Ap1 ⇐⇒


a1 > n− 2 and a1 ̸= n, if r = 2,

a1 ≥ n and r ≤ a1 − n+ 1, if 3 ≤ r ≤ n− 2,

a1 ≥ n− 2, if r = n− 1.

Proposition [G3]

Hence, if the previous condition holds, then βi(k[S1]) = βi(k[S]),
∀i.
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ApS ≃ Ap1 ⇐⇒
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ApS ≃ Ap1 ⇐⇒


a1 > n− 2 and a1 ̸= n, if r = 2,

a1 ≥ n and r ≤ a1 − n+ 1, if 3 ≤ r ≤ n− 2,

a1 ≥ n− 2, if r = n− 1.

r Ap1 ≃ APS k[S1] k[S]

1 ✓ (1, 9, 16, 9, 1) (1, 9, 16, 9, 1)

6 ✓ (1, 10, 20, 15, 4) (1, 10, 20, 15, 4)
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ApS ≃ Ap1 ⇐⇒


a1 > n− 2 and a1 ̸= n, if r = 2,

a1 ≥ n and r ≤ a1 − n+ 1, if 3 ≤ r ≤ n− 2,

a1 ≥ n− 2, if r = n− 1.

r Ap1 ≃ APS k[S1] k[S]

1 ✓ (1, 9, 16, 9, 1) (1, 9, 16, 9, 1)

6 ✓ (1, 10, 20, 15, 4) (1, 10, 20, 15, 4)

2 ✓ (1, 6, 10, 6, 1) (1, 6, 10, 6, 1)

5 ✓ (1, 6, 10, 6, 1) (1, 6, 10, 6, 1)



Example: 5 < 6 < 7 < 8 < 9 < 10
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ApS ≃ Ap1 ⇐⇒


a1 > n− 2 and a1 ̸= n, if r = 2,

a1 ≥ n and r ≤ a1 − n+ 1, if 3 ≤ r ≤ n− 2,

a1 ≥ n− 2, if r = n− 1.

r Ap1 ≃ APS k[S1] k[S]

1 ✓ (1, 9, 16, 9, 1) (1, 9, 16, 9, 1)

6 ✓ (1, 10, 20, 15, 4) (1, 10, 20, 15, 4)

2 ✓ (1, 6, 10, 6, 1) (1, 6, 10, 6, 1)

5 ✓ (1, 6, 10, 6, 1) (1, 6, 10, 6, 1)

3 X (1, 7, 14, 11, 3) (1, 7, 17, 16, 5)

4 X (1, 6, 11, 8, 2) (1, 7, 17, 16, 5)
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¡Gracias!

Thank you!


