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0. Algebroid branches and curves

Algebroid branch: one-dimensional domain of the form
R = k[[x1, . . . , xn]]/P (k algebraically closed).

Q(R) ∼= k((t)) and R ∼= k[[t]] (and it is a finite R-module)
and v(R \ {0}) is a numerical semigroup.

Algebroid curve: one-dimensional, reduced ring of the form
R = k[[x1, . . . , xn]]/P1 ∩ · · · ∩ Ph
(Pi height n− 1 primes, k algebraically closed).
Ri = k[[x1, . . . , xn]]/Pi is the i-th branch of R.

Q(R) ∼= k((t1))× · · · × k((th)) and R ∼= k[[t1]]× · · · × k[[th]].
If we set v(r) = (v1(r1), . . . , vh(rh)), then the value semigroup is:

S = v(R) := {v(r) : r ∈ R, r non-zero divisor} ⊂ Nh.



1. Value semigroups and equisingularity of plane curves.

Value semigroup is a possible criterion of equisingularity for al-

gebroid branches or curves.

Two plane algebroid branches are formally equivalent (i.e. they

have the same multiplicity sequence)⇔ they have the same value

semigroup.

In case k = C two plane analytic branches are topologically equiv-

alent ⇔ are formally equivalent [Zariski].

Both multiplicity sequences and value semigroups of plane alge-

broid branches have been characterized [Zariski, Bertin-Carbonne,

Brezinsky, Angermüller].



As in the one branch case, two plane algebroid curves are formally

equivalent ⇔ they have the same value semigroup [Waldi].

Garcia (2 branches case) and Delgado gave a characterization of

value semigroups of plane curves depending on its projections.

We want to give a constructive characterization connected to the

blowing up process, based on an old result of Apéry (that holds

for the 1 branch case), directly relating the value semigroup and

the ”multiplicity tree”.



2 Value semigroups of algebroid curves

The value semigroup of an algebroid curve is a submonoid of Nh,

with some more properties connected to valuations.

In the case h = 2, setting

∆S(a1, a2) = ({(a1, y) : a2 < y} ∪ {(x, a2) : a1 < x}) ∩ S, they are:

(1) ∃ γ = γ(S) ∈ N2 s.t. ∆S(γ) = ∅ and γ + (1,1) + N2 ⊆ S;

(2) α,β ∈ S ⇒ min(α,β) ∈ S;

(3) u
u
⇒ u u u

⇑

u

(4) (0,0) is the only element of S on the axes.
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Picture 1. S = v(R)

R = k[[x,y,z]]
(x3−z2,y)∩(x3−y4,z)

x 7→ (t2, u4)

y 7→ (0, u3)

z 7→ (t3,0)

v(x+ y) = (2,3)

γ = (4,8)

γ + (1,1) = (5,9)



3. Good semigroups

A subsemigroup S of Nh satisfying properties (1), (2), (3) is
called a good semigroup. If (4) holds, it is said to be local.
Not all good semigroups arise as value semigroups [V. Barucci,

, R. Fröberg - 2000], [N. Maugeri, G. Zito - 2019]
Open pb.: characterize value semigr. among good semigroups.

Definition. Relative ideal: E ⊆ Zh s.t. α+E ⊆ E, ∀ α ∈ S and
∃ α ∈ S, s.t. α+ I ⊆ S. I is good if it satisfies (2), (3)
Remark: I fractional ideal of R ⇒ v(I) good rel. ideal of v(R).

“Bad”facts:
• good semigroups are not finitely generated as semigroups;
• good ideals are not finitely generated as semigroup ideals;

• operations on good ideals do not produce good ideals;
• It is much more difficult to prove results for h ≥ 3, than for
h = 2.
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Picture 2. Generators of S



4. Why to study value semigroups and good semigroups?

It is possible to define a “distance” function,
d(E \ F ), between good relative ideals E ⊇ F such that

Proposition. [ ] If I ⊇ J are two fractional ideals of R, then
λR(I/J) = d(v(I) \ v(J)).
Then we can study the properties of R, using v(R); e.g.:

• If S is local, set e = (e1, . . . , eh) = minS \ {0};
multiplicity: λR(R/(x)) = e1 + · · ·+ eh
with x minimal reduction of m i.e. v(x) = e.
Notice that ei is the multiplicity of the i-th branch of R;

• degree of singularity: λR(R/R) = d(Nh \ S).

Also we can get information e.g on Goresteinness [Campillo, Del-
gado, Kiyek], Arf property, embedding dimension [Maugeri, Zito],
type [ , Guerrieri, Micale].



5. Blowing up tree and multiplicity tree

Let R be a branch: its blow-up (or strict quadratic transform) is

Rm = ∪n>0(mn :Q(R) mn) = mn0 :Q(R) mn0 (∃ n0 >> 0).

If x is a minimal reduction of m and m = (x, x2, . . . , xν),

Rm = R[x2/x, . . . xν/x].

R ⊂ Rm ⊆ R ∼= k[[t]], hence, denoting Rm = R1, we can blow up

its maximal ideal and so on, getting:

R = R0 ⊂ R1 ⊂ · · · ⊂ Rl = R = R = · · ·

The sequence of multiplicities ei = e(Ri) is the multiplicity se-

quence of R.



More generally, if R is a curve and I an ideal of R, the blowing

up RI of I is ∪n>0(In :Q(R) I
n) = In0 :Q(R) I

n0 for some n0.

Again we can associate to R a sequence (Lipman sequence) of

semilocal rings

R = R0 ⊂ R1 ⊂ · · · ⊂ Rl = R = R = · · ·

where Ri+1 is obtained from Ri by blowing up the Jacobson

radical of Ri, J(Ri).

Fact. If mi,1, . . . ,mi,ri are the maximal ideals of Ri, then

Ri
∼= Rmi,1 × · · · ×Rmi,ri

Hence to an algebroid curve R with R = V1 × · · · × Vh we can

associate its blowing up tree of R and its multiplicity tree



Example.

R = k+(t4, u5, v6)k+(t6k[[t]]×((u8, v10)k+(u10k[[u]]×v12k[[v]])))
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Picture 3

For non-plane singularities it is NOT possible to reconstruct the
multplicity tree only by the value semigroup, nor viceversa.



6. Apéry set and value semigroups of plane branches

Let s ∈ S ⊆ N. The Apéry set of S (with respect to s) is:

Ap(S, s) = {x ∈ S : x−s /∈ S} = {a0 = 0 < a1 < · · · < as−1 = f(S)+s}

Theorem. [Apéry] [Angermüller]

Let R be a plane algebroid branch, e = e(R) and v(R) = S.

Set Ap(S, e) = {a0 = 0 < a1 < a2 < . . . < ae−1}; then

Ap(v(R1), e) = {a0 < a1 − e < a2 − 2e < . . . < ae−1 − (e− 1)e}.

⇒ Computation of the multiplicity sequence of a plane branch,

by its value semigroup and vice-versa.



Example. R = k[[t4, t6 + t7]] (char(k) 6= 2). Set S1 = v(R1).

v(R) = S = 〈4,6,13〉 e(R) = 4 Ap(S,4) = {0,6,13,19}.

⇒ Ap(S1,4) = {0,2 = 6−4,5 = 13−8,7 = 19−12}, S1 = 〈2,5〉

Repeating the procedure we get the multiplicity sequence of R:

4,2,2,1, . . ..

If we start with the multiplicity sequence, we can go backwards

in the sequence of blowups:

assume to know that S1 = v(R1) = 〈2,5〉,

e0 = 4: Ap(S1,4) = {0,2,5,7}
⇒ Ap(S,4) = {0,6 = 2 + 4,13 = 5 + 8,19 = 7 + 12}

⇒ S = 〈4,6,13,19〉 = 〈4,6,13〉.



The reason is:

R = k[[X,Y ]]/(F ) = k[[x, y]] = k[[x]] + k[[x]]y + · · ·+ k[[x]]ye−1,

where x = X + (F ), y = Y + (F ), v(y) > v(x) = e.

and, if Ap(S, e) = {a0 = 0 < a1 < a2 < . . . < ae−1}, then

ai = v(yi + φi(x, y))

where degy(φi) < i.

In the above example:

R = k[[t4, t6 + t7]], x = t4, y = t6 + t7, Ap(S,4) = {0,6,13,19};
a1 = 6 = v(y), a2 = 13 = v(y2 − x3), a3 = 19 = v(y3 − x3y).

R1 = R[y/x] = k[[x, y/x]] = k[[x]]+k[[x]](y/x)+· · ·+k[[x]](y/x)e−1

In the above example:

R1 = k[[t4, t2 + t3]], Ap(v(R1),4) = {0,2,5,7}, and, e.g.

5 = v((y2 − x3)/x2)).



Why can we go backwards?

Proposition. [Barucci, , Fröberg] Let R be a branch.

Set R1 = R[y/x], e = v(x) and Ap(S1, e) = {a′0, . . . , a
′
e−1}. Then

∃ g ∈ R1 : R1 = k[[x]] + k[[x]]g + · · ·+ k[[x]]ge−1

and a′i = v(gi + ψi) (with deg(ψi) < i).

Moreover, R = k[[x]] + k[[x]]gx+ · · ·+ k[[x]]ge−1xe−1 and

{(gi + ψi)x
i | i = 0, . . . e− 1} determines the Apéry set of v(R).



7. Apéry set and value semigroups of plane curves

Let S ⊂ Nh and set δ = (d1, . . . , dh) ∈ S.

The Apéry set of S (with respect to δ) is:

Ap(S, δ) = {α ∈ S : α− δ /∈ S}

The problem, now, is that Ap(S, δ) is infinite and not linearly

ordered.

We would like to have a partition of Ap(S, δ) in D = d1 + · · ·+dh
subsets:

Ap(S, δ) =
D−1⋃
i=0

Ai

in such a way that the Ai play the role of the ai.
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Picture 4. Ap(S, δ)

now Ap(S, δ) is infinite

δ = (2,3) = e

How do we define the Ai?

Define α ≤≤ β iff either α = β or αi < βi for both i = 1,2.
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Picture 5. A4

δ = e = (2,3), D = 2 + 3 = 5

A4 = {α ∈ Ap(S, e) | α max. w.r.t. ≤≤}

= ∆S(γ + e)
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Picture 6. A3

A3 ⊆ {α ∈ Ap(S, e) \A4 max. w.r.t. ≤≤}

we exclude the β obtained as infimums
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Picture 7. Ap(S, e) = A0 ∪A1 ∪A2 ∪A3 ∪A4



Theorem [ , Guerrieri, Micale] [Guerrieri, Maugeri, Micale]

Let S ⊆ Nh be a good semigroup, δ = (d1, . . . , dh) and set

D = d1 + · · ·+ dh. Then

Ap(S, δ) =
D−1⋃
i=0

Ai.



8. Apéry process for plane curves

Let R = k[[X,Y ]]/(F ); with F = G1G2 · · ·Gh,

(Gi irreducible, pairwise distinct). We can assume:

F = Y E +
∑E−1
i=0 ci(X)Y i, with E = e(R).

Setting x = X + (F ) and y = Y + (F ):

R = k[[x, y]] = k[[x]] + k[[x]]y + · · ·+ k[[x]]yE−1,

where v(y) > v(x) = e = (e1, . . . , eh) and E = e1 + · · ·+ eh.

Theorem. [Barucci, , Fröberg] It is possible to define Ti ⊂ R,

depending on yi, such that, if Ap(v(R), e) = ∪E−1
i=0 Ai, then

Ai = v(Ti)

So we can generalize the one branch case for R and R1 both

local.

If R1 is not local how can we go backwards?



Proposition. [Guerrieri, Maugeri, Micale] It is possible to define

the levels of the Apéry set in the non local case and describe

them in function of the levels of the projections.

Theorem.[ , Delgado, Guerrieri, Maugeri, Micale] Let W non

local, W = k[[t1]] × · · · × k[[th]], fix ε = (ε1, . . . , εh) ∈ v(W ), with

εi > 0 ∀i; set E = ε1 + · · ·+ εh. Then

∀f = (f1, f2) ∈W , of value v(f) = ε, ∃ g = (g1, g2) ∈W , s.t.

W = k[[f ]] + k[[f ]]g + · · ·+ k[[f ]]gE−1.

Theorem. [ , D, G, M, M] It is possible to define Ti ⊂ W ,

depending on gi, such that, if Ap(v(W ), ε) = ∪E−1
i=0 Ai,

Ai = v(Ti)



Proposition. Set R = k[[x]]+k[[x]]y+ · · ·+k[[x]]yE−1, algebroid
curve of multiplicity e = (e1, . . . , eh).
If we choose f = x and g as in the previous theorem, then
R1 = k[[x]] + k[[x]]g + · · ·+ k[[x]]gE−1 and

R = k[[x]] + k[[x]]gx+ · · ·+ k[[x]](gx)E−1

Corollary. If Ap(v(R), e) =
E−1⋃
i=0

Ai, Ap(v(R1), e) =
E−1⋃
i=0

A′i, then

for every i, Ai = A′i + ie.
Hence to give a semigroup of a plane curve with h ≥ 2 branches
is equivalent to give its multiplicity tree.

Theorem. [ , D, G, M, M] Characterization of the multiplicity
trees of plane curves with any number of branches.
Thus we can give a constructive characterization of all the value
semigroup of a plane singularity with any number of branches.
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Picture 8. S = v(R) Ap(S, e) = A0 ∪A1 ∪A3 ∪A4

R = k[[x,y]]
(x7−y2)∩(x7−x4+2x2y−y2)

x 7→ (t2, u2)

y 7→ (t7, u4 + u7)

e = (2,2)
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Picture 9. Ap(v(R1, e)) = A0 ∪A1 ∪A3 ∪A4 and Ap(v(R2), e1))

Now R2
∼= R2,1 ×R2,2 is semilocal and S2 := v(R2) = π1(S2)× π2(S2).



THANKS FOR YOUR ATTENTION!


