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0. Algebroid branches and curves

Algebroid branch: one-dimensional domain of the form
R = k[[x1,...,zn]]/P  (k algebraically closed).

Q(R) 2 Ek((t)) and R £ K[[t]] (and it is a finite R-module)
and v(R\ {0}) is @ numerical semigroup.

Algebroid curve: one-dimensional, reduced ring of the form
R=k[[z1,...,2)]/PLO-- NPy

(P; height n — 1 primes, k algebraically closed).

R; = k[[x1,...,xn]]/P; is the i-th branch of R.

Q(R) = k((t1)) x -+ x k((t4)) and R = K[[t1]] x - - - x K[[t4]].
If we set v(r) = (v1(r1),...,v,(ry)), then the value semigroup is:

S =v(R) :={v(r): r € R, r non-zero divisor} ¢ N”.



1. Value semigroups and equisingularity of plane curves.

Value semigroup is a possible criterion of equisingularity for al-
gebroid branches or curves.

Two plane algebroid branches are formally equivalent (i.e. they
have the same multiplicity sequence) < they have the same value
semigroup.

In case k£ = C two plane analytic branches are topologically equiv-
alent < are formally equivalent [Zariski].

Both multiplicity sequences and value semigroups of plane alge-
broid branches have been characterized [Zariski, Bertin-Carbonne,
Brezinsky, Angermiiller].



As in the one branch case, two plane algebroid curves are formally
equivalent < they have the same value semigroup [Waldi].

Garcia (2 branches case) and Delgado gave a characterization of
value semigroups of plane curves depending on its projections.

We want to give a constructive characterization connected to the
blowing up process, based on an old result of Apéry (that holds
for the 1 branch case), directly relating the value semigroup and
the "multiplicity tree”.



2 Value semigroups of algebroid curves
The value semigroup of an algebroid curve is a submonoid of NF,
with some more properties connected to valuations.

In the case h = 2, setting
A°(a1,a2) = ({(a1,y) as < ytU{(z,a0) : a1 < z}) NS, they are:

(1) I3vy=~(8) eN2s.t. A°(y)=0and v+ (1,1) +N2C S;

(2) a, €S = min(a,B) € S;

(3) T

e — o e o

(4) (0,0) is the only element of S on the axes.
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Picture 1. S =v(R)

R =

kllz,y.2]]

(z3—22,y)N(z>—y*,2)

z— (t2,u?)

y = (0,u?)

z— (t3,0)

v(z +y) = (2,3)
v = (4,8)

v+ (1,1) =(5,9)



3. Good semigroups

A subsemigroup S of N! satisfying properties (1), (2), (3) is
called a good semigroup. If (4) holds, it is said to be local.

Not all good semigroups arise as value semigroups [V. Barucci,
_, R. Froberg - 2000], [N. Maugeri, G. Zito - 2019]

Open pb.: characterize value semigr. among good semigroups.

Definition. Relative ideal. E C Zhst. a4+ E CFE,VaeS and
JaeS, s.t. a+I1CS. Iisgood if it satisfies (2), (3)
Remark: I fractional ideal of R = v(I) good rel. ideal of v(R).

“Bad’’ facts:
e good semigroups are not finitely generated as semigroups;
e good ideals are not finitely generated as semigroup ideals;

e Operations on good ideals do not produce good ideals;
e It is much more difficult to prove results for h > 3, than for
h = 2.
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Picture 2.
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Generators of S



4. Why to study value semigroups and good semigroups?

It is possible to define a ‘“distance” function,
d(E \ F), between good relative ideals E D F such that

Proposition. [ ] If I D J are two fractional ideals of R, then

ArR(I/J) = d(v(I) \ v(J)).
Then we can study the properties of R, using v(R); e.g.:

e If S is local, set e = (eq,...,e;) = min S\ {0};
multiplicity: Agp(R/(x)) =e1+ - -+ ¢

with £ minimal reduction of m i.e. v(z) = e.

Notice that e; is the multiplicity of the -th branch of R,

e degree of singularity: Ap(R/R) = d(N"\ 9).
Also we can get information e.g on Goresteinness [Campillo, Del-

gado, Kiyek], Arf property, embedding dimension [Maugeri, Zito],
type [_, Guerrieri, Micale].



5. Blowing up tree and multiplicity tree

Let R be a branch: its blow-up (or strict quadratic transform) is

R™ = Un>o(m" ‘Q(R) m') = m"0 ‘Q(R) m"0 (3 ng >> 0).

If z is @ minimal reduction of m and m = (z, 2o, ...,2y),
R™ = Rlxp/x,...xy/x].

R C R™ C R = k[[t]], hence, denoting R™ = Ry, we can blow up
its maximal ideal and so on, getting:

R=RyCR,C---CRR=R=R=---

The sequence of multiplicities e; = e(R;) is the multiplicity se-
quence of R.



More generally, if R is a curve and I an ideal of R, the blowing
up R of Tis Up,~o(I™ 'Q(R) I") = 1"0 'q(r) "0 for some ng.

Again we can associate to R a sequence (Lipman sequence) of
semilocal rings

R:ROCRIC“'CRZZEZR:---

where R;4; IS obtained from R; by blowing up the Jacobson
radical of R;, J(R;).

Fact. If m;1,...,m;,. are the maximal ideals of R;, then

>
RZ —— Rm’b,l >< c e >< RmZ,T,L

Hence to an algebroid curve R with R = V] x --- x V}, we can
associate its blowing up tree of R and its multiplicity tree



Example.
R = k+(t*, u®, v0) k4 (0K [[t]] x ((u8, v10) k+ (u1Ok[[u]] x v 12k [[v]])))

k[[t1)] Wk[lt2)]  WK[ts)) . (1,0,0) . (0,1,0) .(0,0,1)

(RQ)mQ,l (RQ)mQ,Q (07 27 2)
(2,3,4)

(4,5,6)
Picture 3

For non-plane singularities it is NOT possible to reconstruct the
multplicity tree only by the value semigroup, nor viceversa.



6. Apéry set and value semigroups of plane branches

Let s€ S CN. The Apéry set of S (with respect to s) is:

Ap(S,s) ={x e S: z—sé¢ St ={ag=0<a1 <---<as_1 = f(S)+s}

Theorem. [Apéry] [Angermiiller]
Let R be a plane algebroid branch, e = e(R) and v(R) = S.
Set Ap(S,e) ={ag=0< a1 <ap <...<ae_1},;, then

Ap(v(R1),e) ={ap<a1—e<ap—2e<...<ae_1— (e—1)e}.

= Computation of the multiplicity sequence of a plane branch,
by its value semigroup and vice-versa.



Example. R = k[[t*, t® +¢"]] (char(k) # 2). Set S1 = v(R1).
v(R) =5 =1(4,6,13) e(R)=4 Ap(S,4)={0,6,13,19}.

= Ap(S1,4) ={0,2=6—-4,5=13-8,7=19—-12}, S1 = (2,5)
Repeating the procedure we get the multiplicity sequence of R:
4,2,2,1,....

If we start with the multiplicity sequence, we can go backwards
in the sequence of blowups:

assume to know that S;1 =v(R1) = (2,5),

eg = 4: Ap(S1,4) = {0,2,5,7}
= Ap(S,4):{O,6=2+4,13=5+8,19=7—|—12}

= S = (4,6,13,19) = (4,6, 13).



The reason is:

R = k[[X,Y]]/(F) = k[lz,y]] = kl[«]] + k[[z]]y + - - + K[[=z]]y* 1,
where x = X + (F), y=Y + (F), v(y) > v(x) = e.

and, if Ap(S,e) ={ag=0<a1<ar<...<a._1}, then

a; = v(y' + ¢i(z,v))
where degy(¢;) < i.

In the above example:
R=EFE[[t*t*+t7]], e =t* y=1t°+41¢", Ap(S,4) ={0,6,13,19};
a1 =6 =v(y), ao = 13 = v(y? — 23), a3 = 19 = v(y3 — 23y).

Ry = Rly/a] = kllz,y/al] = klla)]+k{21)(y/2) 4 +l[]] (y/2)*?

In the above example:
Ry = E[[t*,t2 + t3]], Ap(v(R1),4) = {0,2,5,7}, and, e.g.
5 = v((y? — 23)/2?)).



Why can we go backwards?

Proposition. [Barucci, _, Froberg] Let R be a branch.
Set Ry = R[y/z], e =v(z) and Ap(S1,e) = {ag,...,a,_1}. Then

JgeRy : Ry = k[la]]l +klle]lg + - + k[[z]]g°
and a! = v(g" + ;) (with deg(y;) < 14).

Moreover, R = k[[z]] + k[[z]]gz + - - - + k[[z]]g¢ tz¢~1 and
{(¢"+)z" |i=0,...e — 1} determines the Apéry set of v(R).



7. Apéry set and value semigroups of plane curves

Let S C N* and set 6 = (dy,...,d;,) € S.
The Apéry set of S (with respect to 9) is:

Ap(S,8) ={a€S: a—46¢ S}

The problem, now, is that Ap(S,d) is infinite and not linearly
ordered.

We would like to have a partition of Ap(S,d) in D =d1+---+dy
subsets:

D—-1

1=0

in such a way that the A; play the role of the a;.



e e e e, 5= (2.3) = e

now Ap(S,d) is infinite
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0 2345 — Picture 4. Ap(S,9)

How do we define the A;7
Define a << 3 iff either a« = 3 or o; < 3; for both : =1, 2.
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§=e=(2,3), D=2+3=5
Ag ={a € Ap(S,e) | a max. w.r.t. <<}

=A%y +e)

2345 =

Picture 5. Ay
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A3z C{a € Ap(S,e) \ A4 max. w.r.t. <<}

we exclude the 3 obtained as infimums
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Picture 6. As
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Picture 7. Ap(S,e) = AgU A1 U A> U A3 U Ay



Theorem [_, Guerrieri, Micale] [Guerrieri, Maugeri, Micale]
Let S C N* be a good semigroup, 6 = (dq,...,d;) and set
D=dy+ --+dp. Then

D—-1

1=0



8. Apéry process for plane curves

Let R = k[[X,Y]]/(F); with F = G1Gso--- Gy,
(G; irreducible, pairwise distinct). We can assume:
F=vF 4yl e (X)Y7, with E = e(R).

Settingx =X+ (F) and y=Y + (F):
R = k[[z,y]] = k[[]] + k[[z]ly + - - - + Ek[[=]]y" 1,
where v(y) > v(z) = e = (e1,...,ey) and E=e1+ -- -+ ¢.

Theorem. [Barucci,f , Froberg] It is possible to define T; C R,
depending on ¢*, such that, if Ap(v(R),e) = UE 1A then

A; = v(T;)

So we can generalize the one branch case for R and Rq1 both
local.
If Ry is not local how can we go backwards?



Proposition. [Guerrieri, Maugeri, Micale] It is possible to define
the levels of the Apéry set in the non local case and describe
them in function of the levels of the projections.

Theorem [_, Delgado, Guerrieri, Maugeri, Micale] Let W non
local, W = k[[t1]] x --- x k[[tp]], fix € = (e1,...,¢,) € v(W), with
€i>OVZ,SetE—€1—|— .-+ ¢€,. Then

Vf = (f1,f2) € W, of value v(f) =€, 3 g=(91,92) € W, s.t.

W = k[[f1] + k[[fNg + - + k[[f11gE L.

Theorem. [, D, G, M, M] It is possible to define T; C W,
depending on g¢*, such that, if Ap(v(W),€) = UE 1A

A; = v(T;)



Proposition. Set R = k[[z]] +k[[z]]ly+- - -+ E[[z]]y" 1, algebroid
curve of multiplicity e = (e1,...,ep).

If we choose f = x and g as in the previous theorem, then
Ry = E[[z]] + K[[z]]g + - - - + k[[z]]¢g" ' and

R = k[[z]] + kl[z]lgz + - - - + k[[z]] (gz) " *

E—1 E—1
Corollary. If Ap(v(R),e) = ] 4;, Ap(v(R1),e) = (] Aj, then
for every i, A; = Al + ie.
Hence to give a semigroup of a plane curve with A > 2 branches
IS equivalent to give its multiplicity tree.

Theorem. [, D, G, M, M] Characterization of the multiplicity
trees of plane curves with any number of branches.

Thus we can give a constructive characterization of all the value
semigroup of a plane singularity with any number of branches.
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Picture 8. S=v(R) Ap(S,e) = AgU AU A3U Ay
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Picture 9. Ap(v(Rl, 6)) = AgU A1 U A3 U A, and Ap(’l)(RQ), 61))

Now R- = R271 X R272 is semilocal and Sy = ’U(RQ) = 7'('1(52) X 71'2(52).



THANKS FOR YOUR AT TENTION!



