Marco D'Anna

University of Catania

The value semigroup of a plane curve

singularity with several branches

Jerez - July 9, 2024

0. Algebroid branches and curves

Algebroid branch: one-dimensional domain of the form $R = k[[x_1, ..., x_n]]/P$ (k algebraically closed).

 $Q(R) \cong k((t))$ and $\overline{R} \cong k[[t]]$ (and it is a finite *R*-module) and $v(R \setminus \{0\})$ is a numerical semigroup.

Algebroid curve: one-dimensional, reduced ring of the form $R = k[[x_1, ..., x_n]]/P_1 \cap \cdots \cap P_h$ (P_i height n - 1 primes, k algebraically closed). $R_i = k[[x_1, ..., x_n]]/P_i$ is the *i*-th branch of R.

 $Q(R) \cong k((t_1)) \times \cdots \times k((t_h))$ and $\overline{R} \cong k[[t_1]] \times \cdots \times k[[t_h]]$. If we set $v(r) = (v_1(r_1), \dots, v_h(r_h))$, then the value semigroup is:

 $S = v(R) := \{v(r) : r \in R, r \text{ non-zero divisor}\} \subset \mathbb{N}^h.$

1. Value semigroups and equisingularity of plane curves.

Value semigroup is a possible criterion of equisingularity for algebroid branches or curves.

Two plane algebroid branches are formally equivalent (i.e. they have the same multiplicity sequence) \Leftrightarrow they have the same value semigroup.

In case $k = \mathbb{C}$ two plane analytic branches are topologically equivalent \Leftrightarrow are formally equivalent [Zariski].

Both multiplicity sequences and value semigroups of plane algebroid branches have been characterized [Zariski, Bertin-Carbonne, Brezinsky, Angermüller].

As in the one branch case, two plane algebroid curves are formally equivalent \Leftrightarrow they have the same value semigroup [Waldi].

Garcia (2 branches case) and Delgado gave a characterization of value semigroups of plane curves depending on its projections.

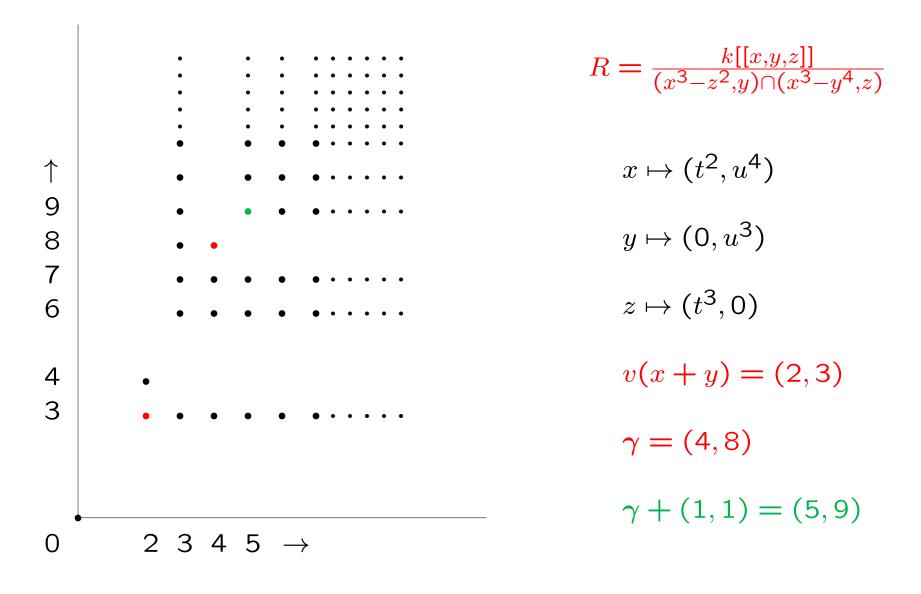
We want to give a constructive characterization connected to the blowing up process, based on an old result of Apéry (that holds for the 1 branch case), directly relating the value semigroup and the "multiplicity tree".

2 Value semigroups of algebroid curves

The value semigroup of an algebroid curve is a submonoid of \mathbb{N}^h , with some more properties connected to valuations.

In the case h = 2, setting $\Delta^{S}(a_{1}, a_{2}) = (\{(a_{1}, y) : a_{2} < y\} \cup \{(x, a_{2}) : a_{1} < x\}) \cap S$, they are: (1) $\exists \gamma = \gamma(S) \in \mathbb{N}^{2}$ s.t. $\Delta^{S}(\gamma) = \emptyset$ and $\gamma + (1, 1) + \mathbb{N}^{2} \subseteq S$; (2) $\alpha, \beta \in S \Rightarrow \min(\alpha, \beta) \in S$; (3) \uparrow $\bullet \Rightarrow \bullet$ \bullet

(4) (0,0) is the only element of S on the axes.



Picture 1. S = v(R)

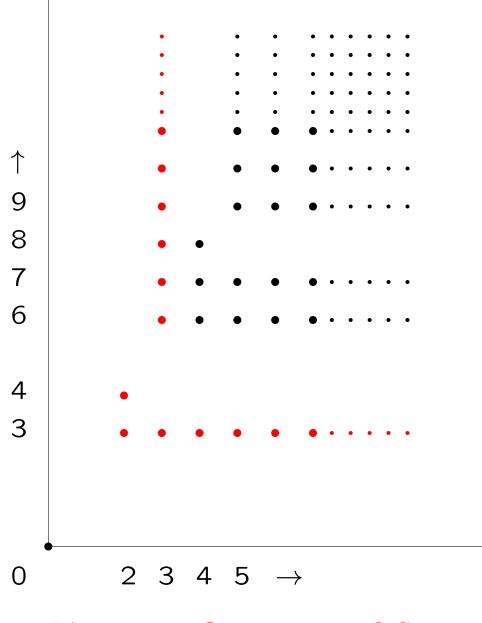
3. Good semigroups

A subsemigroup S of \mathbb{N}^h satisfying properties (1), (2), (3) is called a good semigroup. If (4) holds, it is said to be local. Not all good semigroups arise as value semigroups [V. Barucci, _, R. Fröberg - 2000], [N. Maugeri, G. Zito - 2019] **Open pb.**: characterize value semigr. among good semigroups.

Definition. Relative ideal: $E \subseteq \mathbb{Z}^h$ s.t. $\alpha + E \subseteq E, \forall \alpha \in S$ and $\exists \alpha \in S$, s.t. $\alpha + I \subseteq S$. *I* is good if it satisfies (2), (3) **Remark:** *I* fractional ideal of $R \Rightarrow v(I)$ good rel. ideal of v(R).

"Bad" facts:

- good semigroups are not finitely generated as semigroups;
- good ideals are not finitely generated as semigroup ideals;
- operations on good ideals do not produce good ideals;
- It is much more difficult to prove results for $h \ge 3$, than for h = 2.



Picture 2. Generators of S

4. Why to study value semigroups and good semigroups?

It is possible to define a "distance" function, $d(E \setminus F)$, between good relative ideals $E \supseteq F$ such that

Proposition. [_] If $I \supseteq J$ are two fractional ideals of R, then $\lambda_R(I/J) = d(v(I) \setminus v(J))$. Then we can study the properties of R, using v(R); e.g.:

• If S is local, set $e = (e_1, \ldots, e_h) = \min S \setminus \{0\}$; multiplicity: $\lambda_R(R/(x)) = e_1 + \cdots + e_h$ with x minimal reduction of m i.e. v(x) = e. Notice that e_i is the multiplicity of the *i*-th branch of R;

• degree of singularity: $\lambda_R(\overline{R}/R) = d(\mathbb{N}^h \setminus S).$

Also we can get information e.g on Goresteinness [Campillo, Delgado, Kiyek], Arf property, embedding dimension [Maugeri, Zito], type [_, Guerrieri, Micale].

5. Blowing up tree and multiplicity tree

Let R be a branch: its blow-up (or strict quadratic transform) is

 $R^{\mathfrak{m}} = \bigcup_{n>0} (\mathfrak{m}^{n} :_{Q(R)} \mathfrak{m}^{n}) = \mathfrak{m}^{n_{0}} :_{Q(R)} \mathfrak{m}^{n_{0}} \quad (\exists \ n_{0} >> 0).$ If x is a minimal reduction of \mathfrak{m} and $\mathfrak{m} = (x, x_{2}, \dots, x_{\nu}),$ $R^{\mathfrak{m}} = R[x_{2}/x, \dots, x_{\nu}/x].$

 $R \subset R^{\mathfrak{m}} \subseteq \overline{R} \cong k[[t]]$, hence, denoting $R^{\mathfrak{m}} = R_1$, we can blow up its maximal ideal and so on, getting:

 $R = R_0 \subset R_1 \subset \cdots \subset R_l = \overline{R} = \overline{R} = \cdots$

The sequence of multiplicities $e_i = e(R_i)$ is the multiplicity sequence of R.

More generally, if R is a curve and I an ideal of R, the blowing up R^I of I is $\bigcup_{n>0} (I^n :_{Q(R)} I^n) = I^{n_0} :_{Q(R)} I^{n_0}$ for some n_0 .

Again we can associate to R a sequence (Lipman sequence) of semilocal rings

$$R = R_0 \subset R_1 \subset \cdots \subset R_l = \overline{R} = \overline{R} = \cdots$$

where R_{i+1} is obtained from R_i by blowing up the Jacobson radical of R_i , $J(R_i)$.

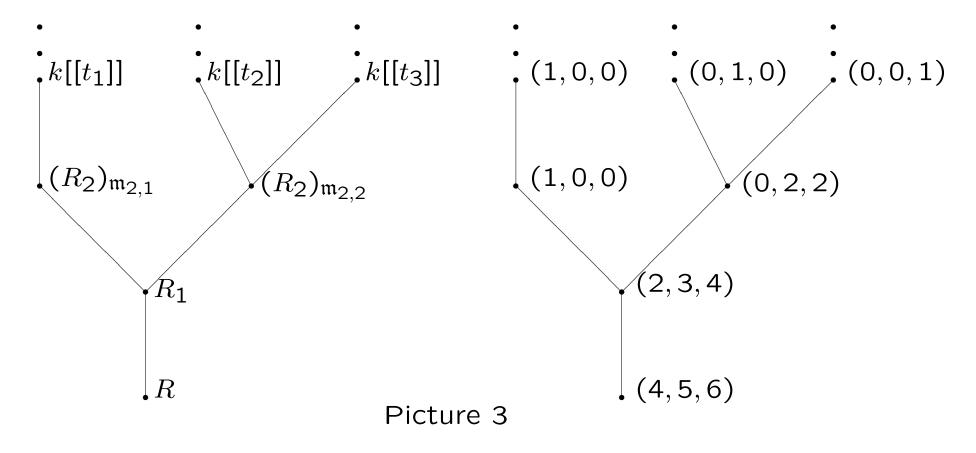
Fact. If $\mathfrak{m}_{i,1}, \ldots, \mathfrak{m}_{i,r_i}$ are the maximal ideals of R_i , then

$$R_i \cong R_{\mathfrak{m}_{i,1}} \times \cdots \times R_{\mathfrak{m}_{i,r_i}}$$

Hence to an algebroid curve R with $\overline{R} = V_1 \times \cdots \times V_h$ we can associate its blowing up tree of R and its multiplicity tree

Example.

 $R = k + (t^4, u^5, v^6)k + (t^6k[[t]] \times ((u^8, v^{10})k + (u^{10}k[[u]] \times v^{12}k[[v]])))$



For non-plane singularities it is NOT possible to reconstruct the multplicity tree only by the value semigroup, nor viceversa.

6. Apéry set and value semigroups of plane branches

Let $s \in S \subseteq \mathbb{N}$. The Apéry set of S (with respect to s) is:

 $Ap(S,s) = \{x \in S : x - s \notin S\} = \{a_0 = 0 < a_1 < \dots < a_{s-1} = f(S) + s\}$

Theorem. [Apéry] [Angermüller] Let R be a plane algebroid branch, e = e(R) and v(R) = S. Set $Ap(S, e) = \{a_0 = 0 < a_1 < a_2 < \dots < a_{e-1}\}$; then

 $Ap(v(R_1), e) = \{a_0 < a_1 - e < a_2 - 2e < \dots < a_{e-1} - (e-1)e\}.$

 \Rightarrow Computation of the multiplicity sequence of a plane branch, by its value semigroup and vice-versa.

Example. $R = k[[t^4, t^6 + t^7]]$ (char(k) \neq 2). Set $S_1 = v(R_1)$.

 $v(R) = S = \langle 4, 6, 13 \rangle$ e(R) = 4 $Ap(S, 4) = \{0, 6, 13, 19\}.$

 $\Rightarrow Ap(S_1, 4) = \{0, 2 = 6 - 4, 5 = 13 - 8, 7 = 19 - 12\}, S_1 = \langle 2, 5 \rangle$

Repeating the procedure we get the multiplicity sequence of R: 4, 2, 2, 1,

If we start with the multiplicity sequence, we can go backwards in the sequence of blowups:

assume to know that $S_1 = v(R_1) = \langle 2, 5 \rangle$,

$$e_0 = 4: Ap(S_1, 4) = \{0, 2, 5, 7\}$$

$$\Rightarrow Ap(S, 4) = \{0, 6 = 2 + 4, 13 = 5 + 8, 19 = 7 + 12\}$$

 $\Rightarrow S = \langle 4, 6, 13, 19 \rangle = \langle 4, 6, 13 \rangle.$

The reason is: $R = k[[X,Y]]/(F) = k[[x,y]] = k[[x]] + k[[x]]y + \dots + k[[x]]y^{e-1},$ where x = X + (F), y = Y + (F), v(y) > v(x) = e.and, if $Ap(S,e) = \{a_0 = 0 < a_1 < a_2 < \dots < a_{e-1}\},$ then $a_i = v(y^i + \phi_i(x,y))$

where $\deg_y(\phi_i) < i$.

In the above example: $R = k[[t^4, t^6 + t^7]], \quad x = t^4, \quad y = t^6 + t^7, \quad Ap(S, 4) = \{0, 6, 13, 19\};$ $a_1 = 6 = v(y), \quad a_2 = 13 = v(y^2 - x^3), \quad a_3 = 19 = v(y^3 - x^3y).$

 $R_1 = R[y/x] = k[[x, y/x]] = k[[x]] + k[[x]](y/x) + \dots + k[[x]](y/x)^{e-1}$

In the above example: $R_1 = k[[t^4, t^2 + t^3]], Ap(v(R_1), 4) = \{0, 2, 5, 7\}, \text{ and, e.g.}$ $5 = v((y^2 - x^3)/x^2)).$ Why can we go backwards?

Proposition. [Barucci, _, Fröberg] Let R be a branch. Set $R_1 = R[y/x]$, e = v(x) and $Ap(S_1, e) = \{a'_0, \dots, a'_{e-1}\}$. Then $\exists g \in R_1 : R_1 = k[[x]] + k[[x]]g + \dots + k[[x]]g^{e-1}$ and $a'_i = v(g^i + \psi_i)$ (with $deg(\psi_i) < i$).

Moreover, $R = k[[x]] + k[[x]]gx + \dots + k[[x]]g^{e-1}x^{e-1}$ and $\{(g^i + \psi_i)x^i \mid i = 0, \dots e - 1\}$ determines the Apéry set of v(R).

7. Apéry set and value semigroups of plane curves

Let $S \subset \mathbb{N}^h$ and set $\delta = (d_1, \ldots, d_h) \in S$. The Apéry set of S (with respect to δ) is:

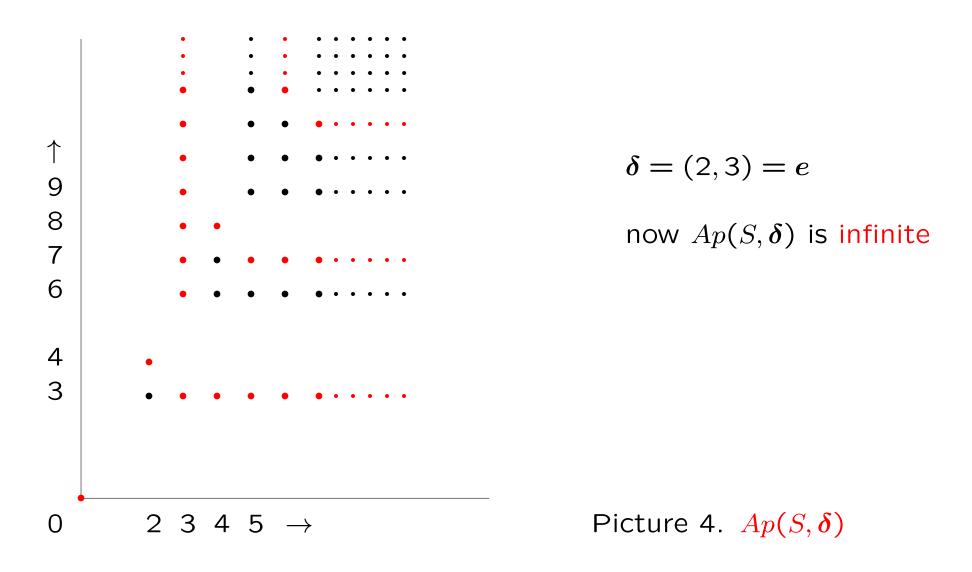
$$Ap(S, \boldsymbol{\delta}) = \{ \boldsymbol{\alpha} \in S : \boldsymbol{\alpha} - \boldsymbol{\delta} \notin S \}$$

The problem, now, is that $Ap(S, \delta)$ is infinite and not linearly ordered.

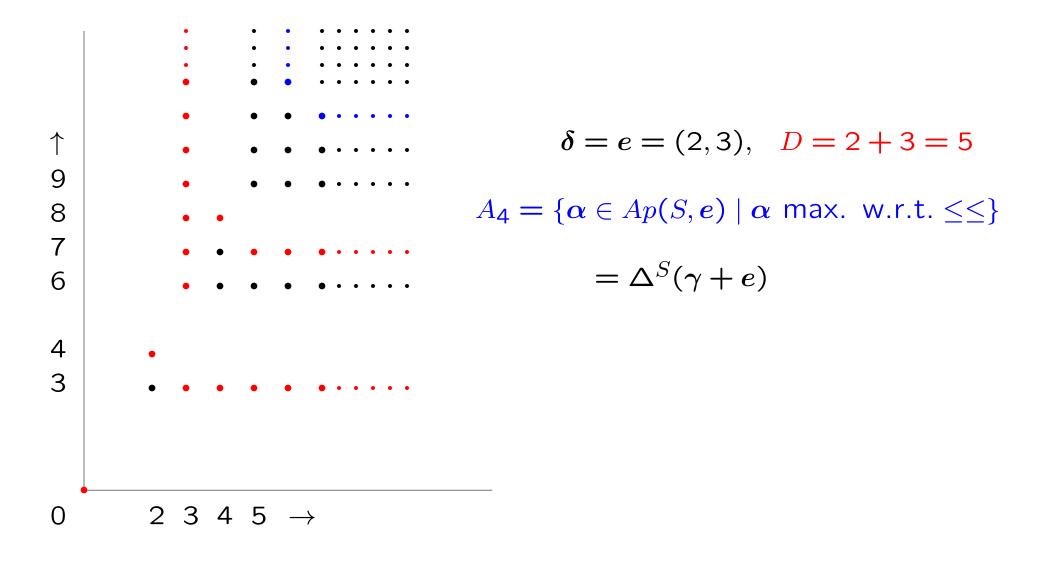
We would like to have a partition of $Ap(S, \delta)$ in $D = d_1 + \cdots + d_h$ subsets:

$$Ap(S, \boldsymbol{\delta}) = \bigcup_{i=0}^{D-1} A_i$$

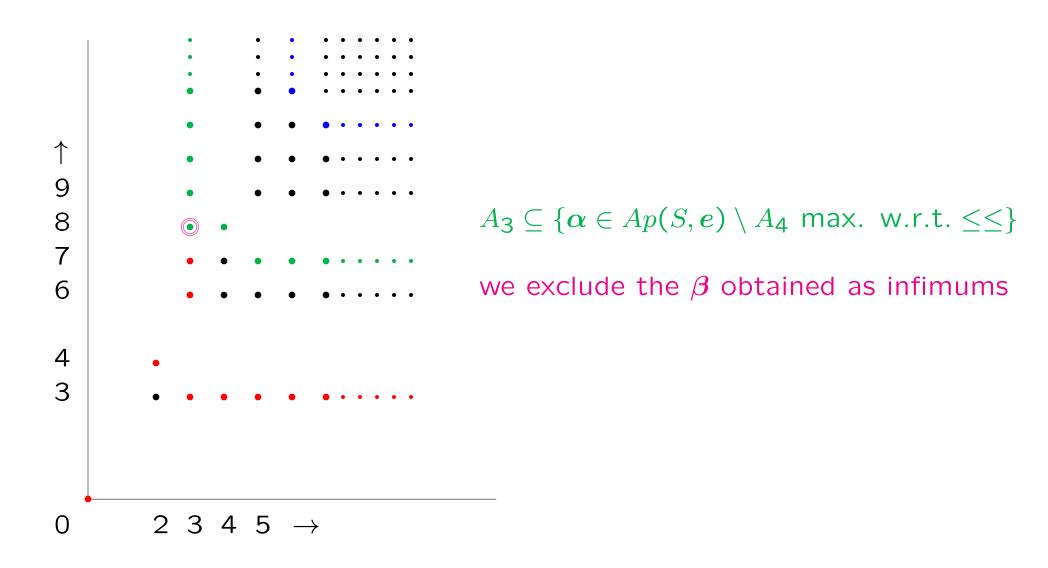
in such a way that the A_i play the role of the a_i .



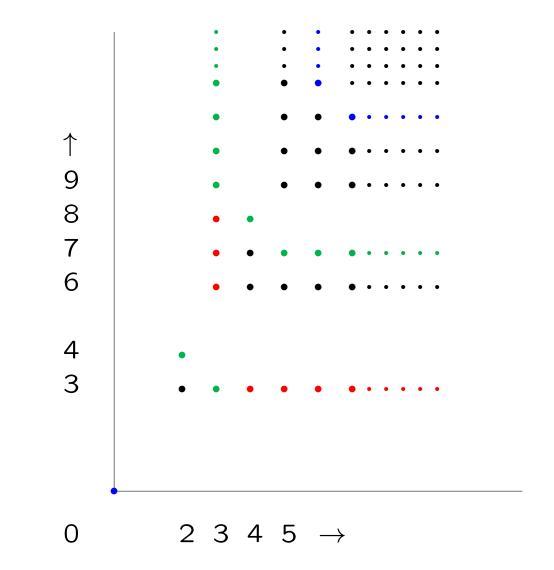
How do we define the A_i ? Define $\alpha \leq \beta$ iff either $\alpha = \beta$ or $\alpha_i < \beta_i$ for both i = 1, 2.



Picture 5. A_4



Picture 6. A_3



Picture 7. $Ap(S, e) = A_0 \cup A_1 \cup A_2 \cup A_3 \cup A_4$

Theorem [_, Guerrieri, Micale] [Guerrieri, Maugeri, Micale] Let $S \subseteq \mathbb{N}^h$ be a good semigroup, $\delta = (d_1, \ldots, d_h)$ and set $D = d_1 + \cdots + d_h$. Then

$$Ap(S, \boldsymbol{\delta}) = \bigcup_{i=0}^{D-1} A_i.$$

8. Apéry process for plane curves

Let R = k[[X, Y]]/(F); with $F = G_1 G_2 \cdots G_h$, (G_i irreducible, pairwise distinct). We can assume: $F = Y^E + \sum_{i=0}^{E-1} c_i(X)Y^i$, with E = e(R).

Setting
$$x = X + (F)$$
 and $y = Y + (F)$:
 $R = k[[x, y]] = k[[x]] + k[[x]]y + \dots + k[[x]]y^{E-1}$,
where $v(y) > v(x) = e = (e_1, \dots, e_h)$ and $E = e_1 + \dots + e_h$.

Theorem. [Barucci,_, Fröberg] It is possible to define $T_i \subset R$, depending on y^i , such that, if $Ap(v(R), e) = \bigcup_{i=0}^{E-1} A_i$, then

$$A_i = v(T_i)$$

So we can generalize the one branch case for R and R_1 both local.

If R_1 is not local how can we go backwards?

Proposition. [Guerrieri, Maugeri, Micale] It is possible to define the levels of the Apéry set in the non local case and describe them in function of the levels of the projections.

Theorem.[_, Delgado, Guerrieri, Maugeri, Micale] Let W non local, $\overline{W} = k[[t_1]] \times \cdots \times k[[t_h]]$, fix $\epsilon = (\epsilon_1, \ldots, \epsilon_h) \in v(W)$, with $\epsilon_i > 0 \quad \forall i$; set $E = \epsilon_1 + \cdots + \epsilon_h$. Then

 $\forall f = (f_1, f_2) \in W$, of value $v(f) = \epsilon$, $\exists g = (g_1, g_2) \in W$, s.t. $W = k[[f]] + k[[f]]g + \dots + k[[f]]g^{E-1}$.

Theorem. [-, D, G, M, M] It is possible to define $T_i \subset W$, depending on g^i , such that, if $Ap(v(W), \epsilon) = \bigcup_{i=0}^{E-1} A_i$,

 $A_i = v(T_i)$

Proposition. Set $R = k[[x]] + k[[x]]y + \cdots + k[[x]]y^{E-1}$, algebroid curve of multiplicity $e = (e_1, \ldots, e_h)$.

If we choose f = x and g as in the previous theorem, then $R_1 = k[[x]] + k[[x]]g + \dots + k[[x]]g^{E-1}$ and

 $R = k[[x]] + k[[x]]gx + \dots + k[[x]](gx)^{E-1}$

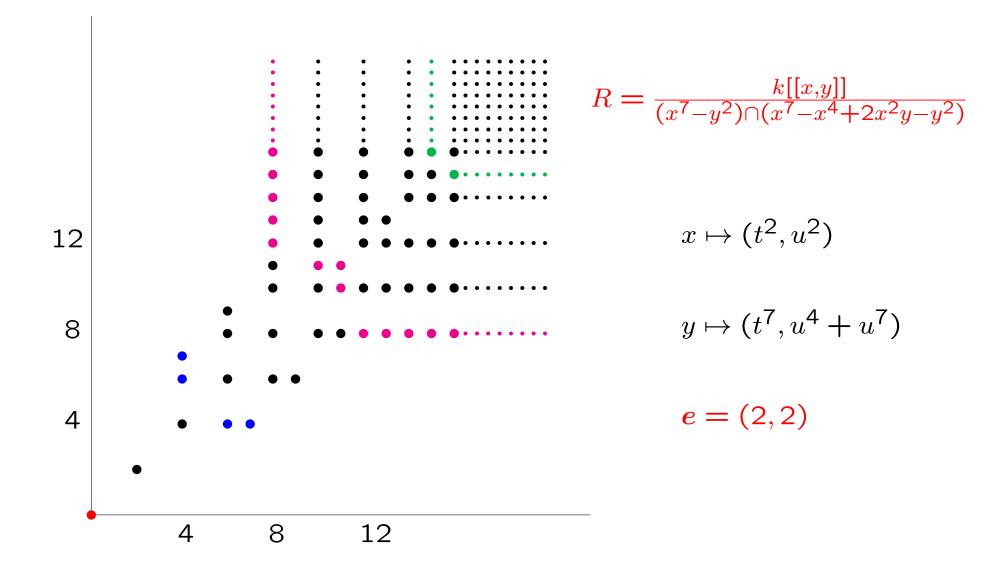
Corollary. If
$$Ap(v(R), e) = \bigcup_{i=0}^{E-1} A_i$$
, $Ap(v(R_1), e) = \bigcup_{i=0}^{E-1} A'_i$, then

for every i, $A_i = A'_i + ie$.

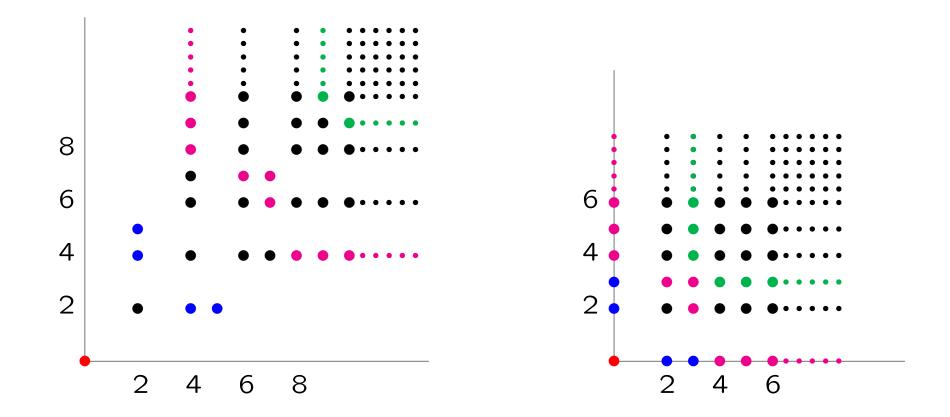
Hence to give a semigroup of a plane curve with $h \ge 2$ branches is equivalent to give its multiplicity tree.

Theorem. [_, D, G, M, M] Characterization of the multiplicity trees of plane curves with any number of branches.

Thus we can give a constructive characterization of all the value semigroup of a plane singularity with any number of branches.



Picture 8. S = v(R) $Ap(S, e) = A_0 \cup A_1 \cup A_3 \cup A_4$



Picture 9. $Ap(v(R_1, e)) = A_0 \cup A_1 \cup A_3 \cup A_4$ and $Ap(v(R_2), e_1)$)

Now $R_2 \cong R_{2,1} \times R_{2,2}$ is semilocal and $S_2 := v(R_2) = \pi_1(S_2) \times \pi_2(S_2)$.

THANKS FOR YOUR ATTENTION!