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Introduction

This talk is based on the paper

On the Set of Betti Elements of a Puiseux Monoid

which has recently appeared in Bulletin of the Australian Mathematical
Society. It was a product of an MIT sponsored Primes project and the
co-authors were

Joshua Jang

Jason Mao

Skyler Mao.

Special thanks go to both Felix Gotti and Harold Polo for seeing this
project through to its completion.
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What Started It All (For Me)?

[width=4.5in]
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In This Paper ....

Factorization in K[X2X3] deals almost exclusively with the study of the
elasticity.

The elasticity is the most basic of the invariants connected to the study of
non-unique factorizations, be in an integral domain (as in the early papers
of Anderson, Anderson, Zafrullah), or in a monoid (as in the early papers
of Halter-Koch and Geroldinger).

So a natural question after this paper was, given a numerical monoid S ,
how do elements factor in

K [X ;S ] or K [[X ; S ]]?

Scott Chapman () July 8, 2024 4 / 25



In This Paper ....

Factorization in K[X2X3] deals almost exclusively with the study of the
elasticity.

The elasticity is the most basic of the invariants connected to the study of
non-unique factorizations, be in an integral domain (as in the early papers
of Anderson, Anderson, Zafrullah), or in a monoid (as in the early papers
of Halter-Koch and Geroldinger).

So a natural question after this paper was, given a numerical monoid S ,
how do elements factor in

K [X ;S ] or K [[X ; S ]]?

Scott Chapman () July 8, 2024 4 / 25



In This Paper ....

Factorization in K[X2X3] deals almost exclusively with the study of the
elasticity.

The elasticity is the most basic of the invariants connected to the study of
non-unique factorizations, be in an integral domain (as in the early papers
of Anderson, Anderson, Zafrullah), or in a monoid (as in the early papers
of Halter-Koch and Geroldinger).

So a natural question after this paper was, given a numerical monoid S ,
how do elements factor in

K [X ;S ] or K [[X ; S ]]?

Scott Chapman () July 8, 2024 4 / 25



But shortly after the appearance of this paper, the study of much more
involved nonunique factorization constants in an atomic monoid S became
popular:

The Delta Set ∆(S).

The Catenary Degree c(S).

The Tame Degree t(S).

The Omega Function ω(x).

But to understand handling these constants in K [X ; S ], one must
have a good understanding of how they work in S . Problems like this
were not seriously approached in affine or numerical monoids until around
2000.
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Betti Elements

Let M be a commutative cancellative monoid. Let A(M) be its set of
atoms. We assume without loss for our discussion that M is reduced (i.e.,
has a unique unit).

If every element has a factorization into atoms then we call M atomic. We
let Z(M) denote the free commutative monoid on the set A(Mred), and
the formal sums in Z(M) are called factorizations. Let Z(b) represent the
atomic factorizations of the element b in M.
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Betti Elements

The Betti graph ∇b of b is the graph whose set of vertices is Z(b) having
an edge between factorizations z , z ′ ∈ Z(x) precisely when z and z ′ share
an atom. An element of b of M is a Betti element if and only if its Betti
graph is disconnected. We let Betti(M) denote the set of Betti elements
of M.

We note that Betti elements can be defined in several other equivalent
ways using an equivalence relation on Z(M) or the minimal presentations
of M. We focus on this method as it makes the most sense when
approaching problems from the direction of factorization theory.
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Figure: For N = ⟨14, 16, 18, 21, 45⟩, the figure shows the Betti graph of
90 ∈ Betti(N) on the left and that of 84 /∈ Betti(N) on the right.
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Why Betti Elements?

Betti Elements play a key role in computing several of the constants I
reviewed earlier in the setting of a numerical monoid.

Theorem (Chapman, Garćıa-Sánchez, Llena - Forum Math.
2009)

If M is a numerical monoid, then

c(M) = max{c(b) | b ∈ Betti(M)}.

Theorem (Chapman, Garćıa-Sánchez, Llena, et. al., Arab J
Math (2012))

If M is a numerical monoid, then

max∆(M) = max{max∆(n) | n ∈ Betti(M)}.
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Theorem (Chapman, Garćıa-Sánchez, Llena - Forum Math.
2009)

If M is a numerical monoid, then

c(M) = max{c(b) | b ∈ Betti(M)}.
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Hence Key Questions

Questions

Given a commutative cancellative monoid M, what is its complete set of
Betti elements (Betti(M))? Can the Betti elements of M be used to draw
basic conclusions about the factorization properties of M?

Even in the case where M is a numerical monoid, the first problem is
highly computative (it can be done in GAP for affine monoids). There are
some exceptional cases.

M = ⟨n1, n2⟩ then Betti(M) = {n1n2}.
M = ⟨n1, n2, n3⟩, then | Betti(M) |= 1, 2, or 3.

M = ⟨n1, n2, . . . , nk⟩ then | Betti(M) |≤ n1(n1−1)
2 .

Finitely generated monoids have finitely many Betti elements. Also, affine
monoids with a unique Betti element are studied in detail in
[Garćıa-Sánchez, Ojeda, Rosales, J. Algebra Appl. (2013)]

Scott Chapman () July 8, 2024 10 / 25



Hence Key Questions

Questions

Given a commutative cancellative monoid M, what is its complete set of
Betti elements (Betti(M))? Can the Betti elements of M be used to draw
basic conclusions about the factorization properties of M?

Even in the case where M is a numerical monoid, the first problem is
highly computative (it can be done in GAP for affine monoids). There are
some exceptional cases.

M = ⟨n1, n2⟩ then Betti(M) = {n1n2}.
M = ⟨n1, n2, n3⟩, then | Betti(M) |= 1, 2, or 3.

M = ⟨n1, n2, . . . , nk⟩ then | Betti(M) |≤ n1(n1−1)
2 .

Finitely generated monoids have finitely many Betti elements. Also, affine
monoids with a unique Betti element are studied in detail in
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Puiseux Monoids

Definition

An additive submonoid of M of Q is a Puiseux monoid if it consists of
nonnegative rationals.

While Puiseux monoids are natural extensions of numerical monoids, there
are many differences.

Puiseux monoids may not be finitely generated.

Puiseux monoids may not have the ACCP.

Puiseux monoids may not be atomic.

Atomic Puiseux monoids may not have finite elasticity.

Atomic Puiseux monoids may not be bounded factorization monoids.

Atomic Puiseux monids may not be finite factorization monoids.
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Some Additional Comments

If you want to get deeply into the last six points, then see the following.

[1] F. Gotti and C. O’Neill. The elasticity of Puiseux monoids, Journal of
Commutative Algebra 12(2020), 319–331.

[2] S. Chapman, F. Gotti, and M. Gotti, When is a Puiseux monoid
atomic?, The American Mathematical Monthly, 128(2021), 302–321.

Comments:

A finitely generated Puiseux monoid is isomorphic to a numerical
monoid.

If M is a Puiseux monoid and 0 is not a limit point of M, then M is
atomic and a bounded factorization monoid.
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A Basic Example

Example

For r ∈ Q>0, set r =
n(r)
d(r) where this representation is in lowest terms. We

also set
Sr = ⟨rn | n ∈ N0⟩

to be the cyclic rational semiring additively generated by the nonnegative
powers of r . Obviously, Sr is a Puiseux monoid. Here are some known
factorization facts about the Sr monoids.

Sr is atomic precisely when either r = 1 or n(r) > 1.

If Sr is atomic, then ∆(Sr ) = {| n(r)− d(r) |}.
If Sr is atomic and r ̸∈ N, then c(r) =| n(r)− d(r) | for all x ∈ Sr
with | Z(x) |> 1. Therefore c(Sr ) =| n(r)− d(r) |.
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Another Basic Example

Example

Let P represent the set of positive primes and suppose that P ⊆ P. A
primary Puiseux monoid is a monoid of the form

⟨ap
p

| p ∈ P and ap ∈ N\pN⟩ ⊂ Q≥0.

The factorization properties of primary Puiseux monoids have been studied
in detail by F. Gotti and C. O’Neill (Journal of Commutative Algebra
(2020)). We say that a ∈ A(M) is stable if the set

{x ∈ A(M)|n(x) = n(a)}

is infinite, and unstable otherwise. Gotti and O’Neill have shown the
following.
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A Primary Puiseux Monoid Theorem

Theorem

For a primary Puiseux monoid M, the following are equivalent:

1 M is a FF-monoid;

2 M is a BF-monoid;

3 Every a ∈ A(M) is unstable.
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An Example

Example

Consider the primary Puiseux monoid M P := ⟨ 1p | p ∈ P⟩. It is well known
that M P is atomic with A(M P) = { 1

p | p ∈ P}. It follows a theorem of
D.F. Anderson and F. Gotti that every element q ∈ M can be written
uniquely as

q = c +
∑
p∈P

cp
1

p
,

where c ∈ N0 and cp ∈ J0, p − 1K for every p ∈ P. From this, we can infer
that for any element q ∈ M, the conditions |Z(q)|= 1 and 1 ∤M q are
equivalent.
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A Theorem on M P

Theorem

Betti(M P) = {1}.

The proof is based on the last inference above.
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Atomization

Let (qn)n≥1 be a sequence consisting of positive rationals, and let (pn)n≥1

be a sequence of pairwise distinct primes such that

gcd(pi , n(qi )) = gcd(pi , d(qj)) = 1

for all i , j ∈ N. Following Gotti and Li (Proc. Amer. Math. Soc. 151
(2023) 2291–2302), we say that

M :=
〈qn
pn

∣∣∣ n ∈ N
〉

is the Puiseux monoid of (qn)n≥1 atomized at (pn)n≥1. It is not hard to
argue that M is atomic with A(M) = {qn

pn
| n ∈ N}. It turns out that we

can determine the Betti elements of certain Puiseux monoids obtained by
atomization.
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A Lemma

Lemma

Let M be the Puiseux monoid of (qn)n≥1 atomized at (pn)n≥1. Then every
element q ∈ M can be uniquely written as follows:

q = nq +
∑
n∈N

cn
qn
pn

, (1)

where nq ∈ ⟨qn | n ∈ N⟩ and cn ∈ J0, pn − 1K for every n ∈ N (here cn = 0
for all but finitely many n ∈ N).
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The Betti Elements of an Atomization

Theorem

Let M be the Puiseux monoid of (qn)n≥1 atomized at (pn)n≥1. Then the
following statements hold.

1 Betti(M) ⊆ ⟨qn | n ∈ N⟩.
2 {qn | n ∈ N} ⊆ Betti(M) if ⟨qn | n ∈ N⟩ is antimatter.

3 Betti(M) ⊆ {qn | n ∈ N} if ⟨qn | n ∈ N⟩ is a valuation monoid.
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A Corollary

Corollary

Let M be the Puiseux monoid of (qn)n≥1 atomized at (pn)n≥1. If
⟨qn | n ∈ N⟩ is an antimatter valuation monoid, then

Betti(M) = {qn | n ∈ N}.
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The Grams Monoid

Example

Let (pn)n≥0 be the strictly increasing sequence whose underlying set
consists of all odd primes, and consider the Puiseux monoid

M :=
〈 1

2npn

∣∣∣ n ∈ N0

〉
.

The monoid M is often referred to as the Grams’ monoid as it was the
crucial ingredient in Grams’ construction of the first atomic integral
domain not satisfying the ACCP. Observe that M is the atomization of the
sequence ( 1

2n )n≥0 at the sequence of primes (pn)n≥0. Since ⟨ 1
2n | n ∈ N0⟩

is an antimatter valuation monoid, it follows from the last Corollary that

Betti(M) =
{ 1

2n

∣∣∣ n ∈ N0

}
.
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Betti Cardinalities in Puiseux Monoids

Proposition

For each b ∈ N ∪ {∞}, there exists an atomic Puiseux monoid M such
that |Betti(M)|= b.
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A Sketch of the Proof

Proof.

The Grams’ monoid has infinitely many Betti elements. Fix b ∈ N. Now
consider the sequence (qn)n≥1 whose terms are defined as qkb+r := r + 1
for every k ∈ N0 and r ∈ J0, b − 1K. Now let (pn)n≥1 be a strictly
increasing sequence of primes such that pn > b for every n ∈ N. Then
gcd(pi , n(qi )) = gcd(pi , d(qj)) = 1 for all i , j ∈ N. Let M be the Puiseux
monoid we obtain after atomizing the sequence (qn)≥1 at the sequence
(pn)n≥1. It follows from part (4) of our previous theorem that

Betti(M) ⊆ {qn | n ∈ N} = J1, bK.

Using part (1) of the same theorem, we obtain

J1, bK ⊆ Betti(M)

and the result follows.
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Example

Let r be a non-integer positive rational, and we return to the Puiseux
monoid Sr := ⟨qn | n ∈ N0⟩. It is well known that Sr is atomic (provided
that q−1 /∈ N) and A(Sr ) = {rn | n ∈ N0}. It follows from our main
theorem that

Betti(Sr ) = {n(r)rn | n ∈ N0}.

Thus, Sr is an atomic Puiseux monoid with infinitely many Betti elements.
When r > 1, it follows that Sr is an FFM (in particular Sr satisfies the
ACCP).
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