Some results on Wilf's conjecture

Shalom Eliahou

Wilf's conjecture (1978) states that for any numerical semigroup S of conductor c, one has $|P||L| \ge c$, where P is the set of primitive elements (i.e. minimal generators) of S and $L = S \cap [0, c - 1]$. Let $S^* = S \setminus \{0\}$ and $m = \min(S^*)$, the multiplicity of S. Some currently open cases in Wilf's conjecture are

 $|P| \ge 4$, or $|L| \ge 13$, or $m \ge 20$, or c > 3m, or |P| < m/3.

Let $D = S^* + S^*$ be the set of decomposable elements of S. Thus $S = \{0\} \sqcup P \sqcup D$. Let $A = S \setminus (m + S)$ be the Apéry set of S with respect to m. It turns out that the larger the proportion $|A \cap D|/m$ is, the more difficult it is to prove Wilf's conjecture for S. Thus, understanding the fine structure of $A \cap D$ is key to making progress towards Wilf's conjecture.

In this talk, we shall outline a recently submitted proof of Wilf's conjecture in the case $|P| \ge m/4$ under the simplifying hypothesis $c \in m\mathbb{N}$. The proof relies on *divsets*, i.e. finite subsets X of monomials in commuting variables x_1, \ldots, x_n which are closed under taking divisors. We use divsets as abstract multiplicative models of $A \cap D$.

We associate to a divset X a suitable graph G(X), whose edges are all pairs $\{u, v\} \subseteq X$ such that $uv \in X$. Let us denote by vm(X) the vertexmaximal matching number of G(X). It turns out that for the case under study, namely

$$|P| \ge m/4 \& c \in m\mathbb{N},$$

it suffices to consider divsets X such that $vm(X) \leq 5$. Finding and analyzing all such divsets allows one to reach the desired conclusion, namely that Wilf's conjecture holds in that case.

As an application, in a separate paper with coauthors M. Delgado and J. Fromentin, we verified Wilf's conjecture for all numerical semigroups S of genus $g \leq 120$ such that $c \in m\mathbb{N}$, by computational means and a suitable trimming of the numerical semigroups tree.