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ABSTRACT. In this work, we explore when the Betti numbers of the coordinate rings of a projective
monomial curve and one of its affine projections are identical. Given an infinite field k& and a sequence

of relatively prime integers ap = 0 < a1 < --- < an, = d, we consider the projective monomial
curve C C P of degree d parametrically defined by x; = u®*v?~% forall i € {0,...,n} and its
coordinate ring k[S]. The curve C; C A} with parametric equations z; = t%¢ for¢ € {1,...,n}isan

affine projection of C and we denote by k[S1] its coordinate ring. The main contribution of this paper
is the introduction of a novel (Grobner-free) combinatorial criterion that provides a sufficient condition
for the equality of the Betti numbers of k[C] and k[C1]. Leveraging this criterion, we identify infinite
families of projective curves satisfying this property.

INTRODUCTION

Let k be an infinite field, and k[x| := k[z1,...,x,) and k[t] := k[t1,..., %] be two poly-
nomial rings over k. Given B = {by,...,b,} C N™, a set of nonzero vectors, each element
b; = (bi1,...,bim) € N corresponds to the monomial t% := tl{“ <. tbim ¢ K[t]. The affine
toric variety Xz C A} determined by B is the Zariski closure of the set given parametrically by

T; = uﬁ“ --ubim forall i = 1,...,n. Consider

Sg = (b1,...,by) = {a1by + -+ anby|1,...,a, € N} C N,

the affine monoid spanned by B. The toric ideal determined by B is the kernel Iz of the k-algebra
homomorphism g : k[x] — k[t] induced by x; — t%. Since k is infinite, one has that I is the
vanishing ideal of X and, hence, the coordinate ring of Xz is (isomorphic to) the semigroup algebra
E[Sp] := Im(pp) ~ k[x]/Ip. The ideal I is an Sp-homogeneous binomial ideal, i.e., if one sets the
Sp-degree of a monomial x* € k[x] as degg, (x¥) := a1b1 + - - - + aub, € Sp, then I is generated
by Sp-homogeneous binomials. One can thus consider a minimal Sg-graded free resolution of k[Sg]
as Sp-graded k[x]-module,

F:0—F,— - — Fy — k[Sg] — 0.

The projective dimension of k[Sg| is pd(k[Sg]) = max{i|F; # 0}. The i-th Betti number of
k[Sg| is the rank of the free module Fj, i.e., 5;(k[Sp]) = rank(F;); and the Betti sequence of
k(S| is (Bi(k[SB]); 0 < i < pd(k[Sp])). When the Krull dimension of k[Sg| coincides with its
depth as k[x]-module, the ring k[Sg] is said to be Cohen-Macaulay. By the Auslander-Buchsbaum
formula, this is equivalent to pd(k[Sgp]) = n — dim(k[Sg]). When k[Sp] is Cohen-Macaulay, its
(Cohen-Macaulay) type is the rank of the last nonzero module in the resolution, i.e., type(k[Sg]) :=
By (k[Ss]) where p = pd(k[Sg]).

Now consider d € Z* and ap := 0 < a1 < --- < a, = d a sequence of relatively prime
integers. Denote by C the projective monomial curve C C IP]’ of degree d parametrically defined by
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r; = u®v?% forall i € {0,...,n},ie., Cis the Zariski closure of

{(utpd=a0 ;... qaigd=ai o gngdTany e PP (4 : v) € PL}.
Taking A = {ay,...,a,} C N?>witha; = (a;,d—a;) foralli = 0,...,n, one has that I 4 is the van-
ishing ideal of C, and the coordinate ring of C is the two-dimensional ring k[S] ~ k[zo, ..., %]/,

where S = S4 denotes the monoid spanned by A. The projective monomial curve C is said to be
arithmetically Cohen-Macaulay if the ring k[S] is Cohen-Macaulay.

The projective curve C has two affine projections, C; = {(u®,...,u’") € A}|u € k} and
Co = {(vi~®0 pd=a1 pd=@n-1) € AT|v € k}, associated to the sequences a1 < --+ < ap
and d —ap—1 < -+ < d— a1 < d — ag, respectively. The second sequence is sometimes
called the dual of the first one. Denote by S; := S4, the numerical semigroup generated by
Ay = {ai,...,a,}. The vanishing ideal of C; is 4, C k[z1,...,z,], and hence, its coordinate
ring is the one-dimensional ring k[S1] ~ k[x1, ..., xy]/14,. Moreover, I 4 is the homogenization of
1 4, with respect to the variable xy. Similarly, denoting by Sz := S 4, the numerical semigroup gen-
erated by Ao := {d — ap,d — a1,...,d — an_1}, the vanishing ideal of Ca is I 4, C k[zo, ..., Tn_1],
its coordinate ring is k[S2| ~ k[zo, ..., Tn—1]/L4,, and I 4 is the homogenization of I 4, with respect
to x,,.

One has that 3;(k[S]) > S (k[S1]) for all 4, and the goal of this work is to understand when the Betti
sequences of k[S] and k[S1] coincide. A necessary condition is that k£[S] is Cohen-Macaulay. Indeed,
affine monomial curves are always arithmetically Cohen-Macaulay while projective ones may be
arithmetically Cohen-Macaulay or not. Thus, pd(k[S]) = pd(k[S1]) if and only if C is arithmetically
Cohen-Macaulay. In Theorem 1.2, which is the main result of this work, we provide a combinatorial
sufficient condition for having equality between the Betti sequences of k[S] and k[S;] by means of
the poset structures induced by S and S; on the Apery sets of both S and S;. In Propositions 2.1 and
2.2, we use our main result to provide explicit families of curves where 3;(k[S]) = 3;(k[S1]) for all
i.

The motivation of this work comes from [4], where the authors obtain a sufficient condition in
terms of Grobner bases to ensure the equality of the Betti sequences.

1. APERY SETS AND BETTI NUMBERS

Letd € ZT and ag := 0 < a1 < -+ < a, = d be a sequence of relatively prime integers. For
eachi = 0,...,n, set a; := (a;,d — a;) € N2, and consider the three sets A1 = {a1,...,a,},
Ay ={d,d—ai,...,d —a,_1} and A = {ay, ...,a,} C N?. We denote by C C P;* the projective
monomial curve defined by A as defined in the introduction, and by C; and C, its affine projections.
Consider S; and S, the numerical semigroups generated by Ay and A5 respectively, and S the monoid
spanned by A that we call the homogenization of S (with respect to d).

Definition 1.1. For i = 1,2, the Apery set of S; with respect to d is Ap, :={y € S; |y — d ¢ S;}.
One can also define the Apery setof Sas APs :={y € S|y —ap ¢ S,y —a, ¢ S}.

Note that AP has at least d elements by [3, Lem. 2.5]. Moreover, |[APs| = d if and only if C is
arithmetically Cohen-Macaulay.

In order to compare 3;(k[S]) and ;(k[S1]) for all i, we will relate in Theorem 1.2 the Apery sets
Ap, and APs with the natural poset structure that both have and that we now define. For i = 1,2,
(Ap;, <;) is a poset, where <; is given by y <; z <= z —y € §;. Similarly, (APgs, <gs) is a poset
for <g definedbyy <sz<—=z—-y € S.

The main result in this section is Theorem 1.2 where we give a sufficient condition in terms of the
poset structures of the Apery sets Ap; and AP for the Betti sequences of k[S1] and k[S] to coincide.
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Theorem 1.2. If (APgs, <s) ~ (Ap;, <1), then 5;(k[S]) = Bi(k[S1]) for all i.

In fact, the condition (APs, <s) ~ (Ap;, <i1) can be checked in terms of the poset Ap; and the
minimal generators of S; when k[S] is Cohen-Macaulay, as shown in Proposition 1.4. Before stating
that result, let us first recall some useful notions about posets.

Definition 1.3. Let (3, <) be a poset.

(a) For y, z € X, we say that z covers y, and denote it by y < z, if y < z and there is no w € X
such thaty < w < z.
(b) We say that X is graded if there exists a function p : > — N, called rank function in 3, such
that:
o Ify,z € Yandy < z, then p(y) < p(2).
o Ify,z € Yand y < z, then p(2) = p(y) + 1.

Proposition 1.4. The following two claims are equivalent:
(a) The posets (Ap,,<1) and (APg, <gs) are isomorphic;
(b) k[S] is Cohen-Macaulay, (Ap,,<1) is graded, and {a1, .. .,an—_1} is contained in the mini-
mal system of generators of S1.

2. EXAMPLES OF APPLICATION

In Propositions 2.1 and 2.2, we provide some sequences a; < --- < a, for which the condition
in Theorem 1.2 is satisfied. Let us start with arithmetic sequences, i.e., sequences a1 < -+ < ap
such that a; = a; + (i — 1)e for some positive integer e. For this family, we refine [4, Cor. 4.2] that
considers a1 > n — 1.

Proposition 2.1. Let a; < ... < ay, be an arithmetic sequence of relatively prime integers. Then,
(APs,<s) ~ (Apy,<y) if and only if ay > n — 2. Therefore, if ay > n — 2, the Betti sequences of
k[S1] and k[S] coincide.

Example 1. For the sequence 5 < 6 < 7 < 8 < 9 < 10, one has thata; = 5 > 4 = n — 2.
Therefore, the Apery sets (Ap;, <1) and (APg, <gs) are isomorphic. Hence, by Theorem 1.2, the
Betti sequences of k£[S;] and k[S] coincide. One can check that both are (1,11, 30, 35,19,4). The
posets (Ap;, <1) and (APs, <gs) in this example are shown in Figure 1.

(11,9) (12,8) (13,7) (14,6)

FIGURE 1. The posets (Ap;, <1) (in blue) and (APs, <s) (in black) for S; = (5,6,7,8,9, 10).

In [1, Sect. 6], the authors studied the canonical projections of the projective monomial curve C
defined by an arithmetic sequence a; < --- < a,, of relatively prime integers, i.e., the curve m,(C)
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obtained as the Zariski closure of the image of C under the 7-th canonical projection 7, : P} --»
P (po i i pn) b= (Dot c i Pre1 t Prgd et Pn). We know that 7, (C) is the projective
monomial curve associated to the sequence a1 < -+ < @r—1 < QGpy1 < -+ < Qp.-

In Proposition 2.2, for any € {2,...,n — 1}, we consider A; = {a1,...,a,} \ {ar}, the
numerical semigroup S; = Sy4,, and its homogenization S, and we characterize when the posets
(Ap;,<1) and (APg, <gs) are isomorphic.

Proposition 2.2. Let a1 < ... < ay be an arithmetic sequence of relatively prime integers with
n >4, andr € {2,...,n — 1}. Consider Ay = {a1,...,an} \ {ar}, the numerical semigroup
Sy generated by Ay, and its homogenization S. Then the posets (Ap,,<1) and (APg,<s) are
isomorphic if and only if one of the following conditions holds:

(a) r=2,a1 >n—1anday #n;

) 3<r<n—2a1>nandr <a;—n-+1;

(c)r=n—1landa; >n — 2.
Consequently, if one of the previous conditions holds, then 3;(k[S1]) = Bi(k[S]), for all i.

Example 2. For the sequence 9 < 10 < 11 < 12 < 13, the Betti sequences of k[S;]| and k[S]
coincide by Proposition 2.1. Indeed, it is (1,10, 20, 15,4) for both curves. The parameters of this
arithmetic sequence are a; = 9, e = 1 and n = 5. Hence, forr = 2,3, 4, if A; = {9,10,11,12,13}\
{a,}, the Betti sequences of k£[S;] and k[S] coincide by Proposition 2.2. One can check that the Betti
sequence is (1,5,6,2) when r = 2 orr = 4, and itis (1,8,12,5) when r = 3.
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