PROJECTIVE MONOMIAL CURVES AND THEIR AFFINE PROJECTIONS

IGNACIO GARCÍA-MARCO O[,](https://orcid.org/0000-0002-5436-9837) PHILIPPE GIMENEZ O, AND MARIO GONZÁLEZ-SÁNCHEZ O

ABSTRACT. In this work, we explore when the Betti numbers of the coordinate rings of a projective monomial curve and one of its affine projections are identical. Given an infinite field k and a sequence of relatively prime integers $a_0 = 0 < a_1 < \cdots < a_n = d$, we consider the projective monomial curve $C \subset \mathbb{P}_k^n$ of degree d parametrically defined by $x_i = u^{a_i}v^{d-a_i}$ for all $i \in \{0, ..., n\}$ and its coordinate ring $k[S]$. The curve $C_1 \subset \mathbb{A}_k^n$ with parametric equations $x_i = t^{a_i}$ for $i \in \{1, ..., n\}$ is an affine projection of C and we denote by $k[S_1]$ its coordinate ring. The main contribution of this paper is the introduction of a novel (Gröbner-free) combinatorial criterion that provides a sufficient condition for the equality of the Betti numbers of $k[\mathcal{C}]$ and $k[\mathcal{C}_1]$. Leveraging this criterion, we identify infinite families of projective curves satisfying this property.

INTRODUCTION

Let k be an infinite field, and $k[\mathbf{x}] := k[x_1, \ldots, x_n]$ and $k[\mathbf{t}] := k[t_1, \ldots, t_m]$ be two polynomial rings over k. Given $\mathcal{B} = \{b_1, \ldots, b_n\} \subset \mathbb{N}^m$, a set of nonzero vectors, each element $b_i = (b_{i1}, \ldots, b_{im}) \in \mathbb{N}^m$ corresponds to the monomial $\mathbf{t}^{b_i} := t_1^{b_{i1}} \cdots t_m^{b_{im}} \in k[\mathbf{t}]$. The affine toric variety $X_{\mathcal{B}} \subset \mathbb{A}^n_k$ determined by $\mathcal B$ is the Zariski closure of the set given parametrically by $x_i = u_1^{b_{i1}} \cdots u_m^{b_{im}}$ for all $i = 1, \ldots, n$. Consider

$$
\mathcal{S}_{\mathcal{B}} := \langle b_1, \ldots, b_n \rangle = \{ \alpha_1 b_1 + \cdots + \alpha_n b_n \, | \, \alpha_1, \ldots, \alpha_n \in \mathbb{N} \} \subset \mathbb{N}^m,
$$

the affine monoid spanned by β . The toric ideal determined by β is the kernel I_{β} of the k-algebra homomorphism $\varphi_B : k[\mathbf{x}] \longrightarrow k[\mathbf{t}]$ induced by $x_i \mapsto \mathbf{t}^{b_i}$. Since k is infinite, one has that I_B is the vanishing ideal of X_B and, hence, the coordinate ring of X_B is (isomorphic to) the semigroup algebra $k[\mathcal{S}_\mathcal{B}] := \text{Im}(\varphi_\mathcal{B}) \simeq k[\mathbf{x}]/I_\mathcal{B}$. The ideal $I_\mathcal{B}$ is an $\mathcal{S}_\mathcal{B}$ -homogeneous binomial ideal, i.e., if one sets the S_B -degree of a monomial $\mathbf{x}^{\alpha} \in k[\mathbf{x}]$ as $\deg_{S_B}(\mathbf{x}^{\alpha}) := \alpha_1 b_1 + \cdots + \alpha_n b_n \in S_B$, then I_B is generated by S_B -homogeneous binomials. One can thus consider a minimal S_B -graded free resolution of $k[S_B]$ as S_B -graded $k[x]$ -module,

$$
\mathcal{F}: 0 \longrightarrow F_p \longrightarrow \cdots \longrightarrow F_0 \longrightarrow k[\mathcal{S}_{\mathcal{B}}] \longrightarrow 0.
$$

The projective dimension of $k[\mathcal{S}_\mathcal{B}]$ is $\text{pd}(k[\mathcal{S}_\mathcal{B}]) = \max\{i \mid F_i \neq 0\}$. The *i*-th Betti number of $k[\mathcal{S}_{\mathcal{B}}]$ is the rank of the free module F_i , i.e., $\beta_i(k[\mathcal{S}_{\mathcal{B}}]) = \text{rank}(F_i)$; and the Betti sequence of $k[\mathcal{S}_{\mathcal{B}}]$ is $(\beta_i(k[\mathcal{S}_{\mathcal{B}}])$; $0 \le i \le \text{pd}(k[\mathcal{S}_{\mathcal{B}}])$. When the Krull dimension of $k[\mathcal{S}_{\mathcal{B}}]$ coincides with its depth as $k[x]$ -module, the ring $k[S_B]$ is said to be Cohen-Macaulay. By the Auslander-Buchsbaum formula, this is equivalent to $pd(k[\mathcal{S}_\mathcal{B}]) = n - \dim(k[\mathcal{S}_\mathcal{B}])$. When $k[\mathcal{S}_\mathcal{B}]$ is Cohen-Macaulay, its (Cohen-Macaulay) type is the rank of the last nonzero module in the resolution, i.e., type($k[S_B]$) := $\beta_p(k[\mathcal{S}_{\mathcal{B}}])$ where $p = \text{pd}(k[\mathcal{S}_{\mathcal{B}}]).$

Now consider $d \in \mathbb{Z}^+$ and $a_0 := 0 < a_1 < \cdots < a_n = d$ a sequence of relatively prime integers. Denote by C the projective monomial curve $C \subset \mathbb{P}_k^n$ of degree d parametrically defined by

This work was supported in part by the grant PID2022-137283NB-C22 funded by MCIN/AEI/10.13039/501100011033 and by ERDF "A way of making Europe". The third author thanks financial support from European Social Fund, *Programa Operativo de Castilla y León*, and *Consejería de Educación de la Junta de Castilla y León*.

$$
x_i = u^{a_i}v^{d-a_i} \text{ for all } i \in \{0, \dots, n\}, \text{ i.e., } \mathcal{C} \text{ is the Zariski closure of}
$$

$$
\{ (u^{a_0}v^{d-a_0} : \dots : u^{a_i}v^{d-a_i} : \dots : u^{a_n}v^{d-a_n}) \in \mathbb{P}_k^n \mid (u : v) \in \mathbb{P}_k^1 \}.
$$

Taking $\mathcal{A} = \{a_0, \ldots, a_n\} \subset \mathbb{N}^2$ with $a_i = (a_i, d - a_i)$ for all $i = 0, \ldots, n$, one has that $I_{\mathcal{A}}$ is the vanishing ideal of C, and the coordinate ring of C is the two-dimensional ring $k[S] \simeq k[x_0, \ldots, x_n]/I_A$, where $S = S_A$ denotes the monoid spanned by A. The projective monomial curve C is said to be arithmetically Cohen-Macaulay if the ring $k[S]$ is Cohen-Macaulay.

The projective curve C has two affine projections, $C_1 = \{(u^{a_1}, \dots, u^{a_n}) \in \mathbb{A}_k^n | u \in k\}$ and $\mathcal{C}_2 = \{ (v^{d-a_0}, v^{d-a_1}, \dots, v^{d-a_{n-1}}) \in \mathbb{A}_k^n | v \in k \}$, associated to the sequences $a_1 < \dots < a_n$ and $d - a_{n-1} < \cdots < d - a_1 < d - a_0$, respectively. The second sequence is sometimes called the dual of the first one. Denote by $S_1 := S_{A_1}$ the numerical semigroup generated by $\mathcal{A}_1 = \{a_1, \ldots, a_n\}.$ The vanishing ideal of \mathcal{C}_1 is $I_{\mathcal{A}_1} \subset k[x_1, \ldots, x_n]$, and hence, its coordinate ring is the one-dimensional ring $k[S_1] \simeq k[x_1,\ldots,x_n]/I_{\mathcal{A}_1}$. Moreover, $I_{\mathcal{A}}$ is the homogenization of I_{A_1} with respect to the variable x_0 . Similarly, denoting by $S_2 := S_{A_2}$ the numerical semigroup generated by $A_2 := \{d - a_0, d - a_1, \ldots, d - a_{n-1}\}$, the vanishing ideal of C_2 is $I_{A_2} \subset k[x_0, \ldots, x_{n-1}],$ its coordinate ring is $k[S_2] \simeq k[x_0,\ldots,x_{n-1}]/I_{\mathcal{A}_2}$, and $I_{\mathcal{A}}$ is the homogenization of $I_{\mathcal{A}_2}$ with respect to x_n .

One has that $\beta_i(k[S]) \geq \beta_i(k[S_1])$ for all i, and the goal of this work is to understand when the Betti sequences of $k[S]$ and $k[S_1]$ coincide. A necessary condition is that $k[S]$ is Cohen-Macaulay. Indeed, affine monomial curves are always arithmetically Cohen-Macaulay while projective ones may be arithmetically Cohen-Macaulay or not. Thus, $pd(k[\mathcal{S}]) = pd(k[\mathcal{S}_1])$ if and only if C is arithmetically Cohen-Macaulay. In Theorem [1.2,](#page-2-0) which is the main result of this work, we provide a combinatorial sufficient condition for having equality between the Betti sequences of $k[S]$ and $k[S_1]$ by means of the poset structures induced by S and S_1 on the Apery sets of both S and S_1 . In Propositions [2.1](#page-2-1) and [2.2,](#page-3-0) we use our main result to provide explicit families of curves where $\beta_i(k[\mathcal{S}]) = \beta_i(k[\mathcal{S}_1])$ for all i.

The motivation of this work comes from [\[4\]](#page-3-1), where the authors obtain a sufficient condition in terms of Gröbner bases to ensure the equality of the Betti sequences.

1. APERY SETS AND BETTI NUMBERS

Let $d \in \mathbb{Z}^+$ and $a_0 := 0 < a_1 < \cdots < a_n = d$ be a sequence of relatively prime integers. For each $i = 0, \ldots, n$, set $a_i := (a_i, d - a_i) \in \mathbb{N}^2$, and consider the three sets $A_1 = \{a_1, \ldots, a_n\}$, $\mathcal{A}_2 = \{d, d - a_1, \dots, d - a_{n-1}\}\$ and $\mathcal{A} = \{\mathbf{a}_0, \dots, \mathbf{a}_n\} \subset \mathbb{N}^2$. We denote by $\mathcal{C} \subset \mathbb{P}_k^n$ the projective monomial curve defined by A as defined in the introduction, and by C_1 and C_2 its affine projections. Consider S_1 and S_2 the numerical semigroups generated by A_1 and A_2 respectively, and S the monoid spanned by A that we call the homogenization of S_1 (with respect to d).

Definition 1.1. For $i = 1, 2$, the Apery set of \mathcal{S}_i with respect to d is $Ap_i := \{y \in \mathcal{S}_i | y - d \notin \mathcal{S}_i\}.$ One can also define the Apery set of S as $AP_{\mathcal{S}} := \{y \in \mathcal{S} \mid y - a_0 \notin \mathcal{S}, y - a_n \notin \mathcal{S}\}.$

Note that $AP_{\mathcal{S}}$ has at least d elements by [\[3,](#page-3-2) Lem. 2.5]. Moreover, $|AP_{\mathcal{S}}| = d$ if and only if C is arithmetically Cohen-Macaulay.

In order to compare $\beta_i(k[S])$ and $\beta_i(k[S_1])$ for all i, we will relate in Theorem [1.2](#page-2-0) the Apery sets $Ap₁$ and AP_S with the natural poset structure that both have and that we now define. For $i = 1, 2$, (Ap_i, \leq_i) is a poset, where \leq_i is given by $y \leq_i z \iff z - y \in S_i$. Similarly, (AP_S, \leq_S) is a poset for \leq_S defined by $y \leq_S z \Longleftrightarrow z - y \in S$.

The main result in this section is Theorem [1.2](#page-2-0) where we give a sufficient condition in terms of the poset structures of the Apery sets Ap_1 and $AP_\mathcal{S}$ for the Betti sequences of $k[\mathcal{S}_1]$ and $k[\mathcal{S}]$ to coincide.

Theorem 1.2. *If* $(AP_{\mathcal{S}}, \leq_{\mathcal{S}}) \simeq (Ap_1, \leq_1)$, then $\beta_i(k[\mathcal{S}]) = \beta_i(k[\mathcal{S}_1])$ for all i.

In fact, the condition $(AP_{\mathcal{S}}, \leq_{\mathcal{S}}) \simeq (Ap_1, \leq_1)$ can be checked in terms of the poset Ap_1 and the minimal generators of S_1 when $k[S]$ is Cohen-Macaulay, as shown in Proposition [1.4.](#page-2-2) Before stating that result, let us first recall some useful notions about posets.

Definition 1.3. Let (Σ, \leq) be a poset.

- (a) For $y, z \in \Sigma$, we say that z *covers* y, and denote it by $y \prec z$, if $y \prec z$ and there is no $w \in \Sigma$ such that $u < w < z$.
- (b) We say that Σ is *graded* if there exists a function $\rho : \Sigma \to \mathbb{N}$, called rank function in Σ , such that:
	- If $y, z \in \Sigma$ and $y < z$, then $\rho(y) < \rho(z)$.
	- If $y, z \in \Sigma$ and $y \prec z$, then $\rho(z) = \rho(y) + 1$.

Proposition 1.4. *The following two claims are equivalent:*

- (a) The posets (Ap_1, \leq_1) and $(AP_{\mathcal{S}}, \leq_{\mathcal{S}})$ are isomorphic;
- (b) $k[S]$ *is Cohen-Macaulay,* (Ap_1, \leq_1) *is graded, and* $\{a_1, \ldots, a_{n-1}\}$ *is contained in the minimal system of generators of* S_1 *.*

2. EXAMPLES OF APPLICATION

In Propositions [2.1](#page-2-1) and [2.2,](#page-3-0) we provide some sequences $a_1 < \cdots < a_n$ for which the condition in Theorem [1.2](#page-2-0) is satisfied. Let us start with arithmetic sequences, i.e., sequences $a_1 < \cdots < a_n$ such that $a_i = a_1 + (i - 1)e$ for some positive integer e. For this family, we refine [\[4,](#page-3-1) Cor. 4.2] that considers $a_1 > n - 1$.

Proposition 2.1. Let $a_1 < \ldots < a_n$ be an arithmetic sequence of relatively prime integers. Then, $(AP_{\mathcal{S}}, \leq_{\mathcal{S}}) \simeq (Ap_1, \leq_1)$ *if and only if* $a_1 > n-2$ *. Therefore, if* $a_1 > n-2$ *, the Betti sequences of* $k[\mathcal{S}_1]$ *and* $k[\mathcal{S}]$ *coincide.*

Example 1. For the sequence $5 < 6 < 7 < 8 < 9 < 10$, one has that $a_1 = 5 > 4 = n - 2$. Therefore, the Apery sets (Ap_1, \leq_1) and (AP_S, \leq_S) are isomorphic. Hence, by Theorem [1.2,](#page-2-0) the Betti sequences of $k[S_1]$ and $k[S]$ coincide. One can check that both are $(1, 11, 30, 35, 19, 4)$. The posets (Ap_1, \leq_1) and $(AP_{\mathcal{S}}, \leq_{\mathcal{S}})$ in this example are shown in Figure [1.](#page-2-3)

FIGURE 1. The posets (Ap_1, \leq_1) (in blue) and (AP_S, \leq_S) (in black) for $S_1 = \langle 5, 6, 7, 8, 9, 10 \rangle$.

In [\[1,](#page-3-3) Sect. 6], the authors studied the canonical projections of the projective monomial curve $\mathcal C$ defined by an arithmetic sequence $a_1 < \cdots < a_n$ of relatively prime integers, i.e., the curve $\pi_r(\mathcal{C})$

obtained as the Zariski closure of the image of C under the r-th canonical projection $\pi_r : \mathbb{P}_k^n \dashrightarrow$ \mathbb{P}^{n-1}_1 k^{n-1} , $(p_0: \cdots : p_n) \mapsto (p_0: \cdots : p_{r-1}: p_{r+1}: \cdots : p_n)$. We know that $\pi_r(\mathcal{C})$ is the projective monomial curve associated to the sequence $a_1 < \cdots < a_{r-1} < a_{r+1} < \cdots < a_n$.

In Proposition [2.2,](#page-3-0) for any $r \in \{2, \ldots, n-1\}$, we consider $\mathcal{A}_1 = \{a_1, \ldots, a_n\} \setminus \{a_r\}$, the numerical semigroup $S_1 = S_{A_1}$, and its homogenization S, and we characterize when the posets (Ap_1, \leq_1) and $(AP_{\mathcal{S}}, \leq_{\mathcal{S}})$ are isomorphic.

Proposition 2.2. Let $a_1 < \ldots < a_n$ be an arithmetic sequence of relatively prime integers with $n \geq 4$ *, and* $r \in \{2, \ldots, n-1\}$ *. Consider* $\mathcal{A}_1 = \{a_1, \ldots, a_n\} \setminus \{a_r\}$ *, the numerical semigroup* S_1 generated by A_1 , and its homogenization S. Then the posets (Ap_1, \leq_1) and (AP_S, \leq_S) are *isomorphic if and only if one of the following conditions holds:*

(a) $r = 2, a_1 \geq n - 1$ *and* $a_1 \neq n$ *;*

- *(b)* 3 ≤ r ≤ $n-2$, a_1 ≥ n *and* r ≤ a_1 − $n+1$ *;*
- *(c)* $r = n 1$ *and* $a_1 \geq n 2$.

Consequently, if one of the previous conditions holds, then $\beta_i(k[S_1]) = \beta_i(k[S])$ *, for all i.*

Example 2. For the sequence $9 < 10 < 11 < 12 < 13$, the Betti sequences of $k[S_1]$ and $k[S]$ coincide by Proposition [2.1.](#page-2-1) Indeed, it is $(1, 10, 20, 15, 4)$ for both curves. The parameters of this arithmetic sequence are $a_1 = 9$, $e = 1$ and $n = 5$. Hence, for $r = 2, 3, 4$, if $A_1 = \{9, 10, 11, 12, 13\}$ ${a_r}$, the Betti sequences of $k[S_1]$ and $k[S]$ coincide by Proposition [2.2.](#page-3-0) One can check that the Betti sequence is $(1, 5, 6, 2)$ when $r = 2$ or $r = 4$, and it is $(1, 8, 12, 5)$ when $r = 3$.

REFERENCES

- [1] I. Bermejo, E. García-Llorente, I. García-Marco, and M. Morales. Noether resolutions in dimension 2. *J. Algebra* 482 (2017), 398-426.
- [2] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 4-3-0 A computer algebra system for polynomial computations. http://www.singular.uni-kl.de, 2022.
- [3] P. Gimenez and M. González Sánchez. Castelnuovo-Mumford regularity of projective monomial curves via sumsets, *Mediterr. J. Math.* 20, 287 (2023), 24 pp.
- [4] J. Saha, I. Sengupta, and P. Srivastava. Betti sequence of the projective closure of affine monomial curves. *J. Symb. Comput.* 119 (2023), 101-111.

INSTITUTO DE MATEMÁTICAS Y APLICACIONES (IMAULL), SECCIÓN DE MATEMÁTICAS, FACULTAD DE CIEN-CIAS, UNIVERSIDAD DE LA LAGUNA, 38200, LA LAGUNA, SPAIN

Email address: iggarcia@ull.edu.es

INSTITUTO DE INVESTIGACIÓN EN MATEMÁTICAS DE LA UNIVERSIDAD DE VALLADOLID (IMUVA), UNIVERSI-DAD DE VALLADOLID, 47011 VALLADOLID, SPAIN

Email address: pgimenez@uva.es

INSTITUTO DE INVESTIGACIÓN EN MATEMÁTICAS DE LA UNIVERSIDAD DE VALLADOLID (IMUVA), UNIVERSI-DAD DE VALLADOLID, 47011 VALLADOLID, SPAIN

Email address: mario.gonzalez.sanchez@uva.es