PROJECTIVE MONOMIAL CURVES AND THEIR AFFINE PROJECTIONS

IGNACIO GARCÍA-MARCO O, PHILIPPE GIMENEZ O, AND MARIO GONZÁLEZ-SÁNCHEZ O

ABSTRACT. In this work, we explore when the Betti numbers of the coordinate rings of a projective monomial curve and one of its affine projections are identical. Given an infinite field k and a sequence of relatively prime integers $a_0 = 0 < a_1 < \cdots < a_n = d$, we consider the projective monomial curve $\mathcal{C} \subset \mathbb{P}_k^n$ of degree d parametrically defined by $x_i = u^{a_i}v^{d-a_i}$ for all $i \in \{0, \ldots, n\}$ and its coordinate ring $k[\mathcal{S}]$. The curve $\mathcal{C}_1 \subset \mathbb{A}_k^n$ with parametric equations $x_i = t^{a_i}$ for $i \in \{1, \ldots, n\}$ is an affine projection of \mathcal{C} and we denote by $k[\mathcal{S}_1]$ its coordinate ring. The main contribution of this paper is the introduction of a novel (Gröbner-free) combinatorial criterion that provides a sufficient condition for the equality of the Betti numbers of $k[\mathcal{C}]$ and $k[\mathcal{C}_1]$. Leveraging this criterion, we identify infinite families of projective curves satisfying this property.

INTRODUCTION

Let k be an infinite field, and $k[\mathbf{x}] := k[x_1, \ldots, x_n]$ and $k[\mathbf{t}] := k[t_1, \ldots, t_m]$ be two polynomial rings over k. Given $\mathcal{B} = \{b_1, \ldots, b_n\} \subset \mathbb{N}^m$, a set of nonzero vectors, each element $b_i = (b_{i1}, \ldots, b_{im}) \in \mathbb{N}^m$ corresponds to the monomial $\mathbf{t}^{b_i} := t_1^{b_{i1}} \cdots t_m^{b_{im}} \in k[\mathbf{t}]$. The affine toric variety $X_{\mathcal{B}} \subset \mathbb{A}^n_k$ determined by \mathcal{B} is the Zariski closure of the set given parametrically by $x_i = u_1^{b_{i1}} \cdots u_m^{b_{im}}$ for all $i = 1, \ldots, n$. Consider

$$\mathcal{S}_{\mathcal{B}} := \langle b_1, \dots, b_n \rangle = \{ \alpha_1 b_1 + \dots + \alpha_n b_n \, | \, \alpha_1, \dots, \alpha_n \in \mathbb{N} \} \subset \mathbb{N}^m \, ,$$

the affine monoid spanned by \mathcal{B} . The toric ideal determined by \mathcal{B} is the kernel $I_{\mathcal{B}}$ of the k-algebra homomorphism $\varphi_{\mathcal{B}} : k[\mathbf{x}] \longrightarrow k[\mathbf{t}]$ induced by $x_i \mapsto \mathbf{t}^{b_i}$. Since k is infinite, one has that $I_{\mathcal{B}}$ is the vanishing ideal of $X_{\mathcal{B}}$ and, hence, the coordinate ring of $X_{\mathcal{B}}$ is (isomorphic to) the semigroup algebra $k[\mathcal{S}_{\mathcal{B}}] := \operatorname{Im}(\varphi_{\mathcal{B}}) \simeq k[\mathbf{x}]/I_{\mathcal{B}}$. The ideal $I_{\mathcal{B}}$ is an $\mathcal{S}_{\mathcal{B}}$ -homogeneous binomial ideal, i.e., if one sets the $\mathcal{S}_{\mathcal{B}}$ -degree of a monomial $\mathbf{x}^{\alpha} \in k[\mathbf{x}]$ as $\deg_{\mathcal{S}_{\mathcal{B}}}(\mathbf{x}^{\alpha}) := \alpha_1 b_1 + \cdots + \alpha_n b_n \in \mathcal{S}_{\mathcal{B}}$, then $I_{\mathcal{B}}$ is generated by $\mathcal{S}_{\mathcal{B}}$ -homogeneous binomials. One can thus consider a minimal $\mathcal{S}_{\mathcal{B}}$ -graded free resolution of $k[\mathcal{S}_{\mathcal{B}}]$ as $\mathcal{S}_{\mathcal{B}}$ -graded $k[\mathbf{x}]$ -module,

$$\mathcal{F}: 0 \longrightarrow F_p \longrightarrow \cdots \longrightarrow F_0 \longrightarrow k[\mathcal{S}_{\mathcal{B}}] \longrightarrow 0.$$

The projective dimension of $k[S_{\mathcal{B}}]$ is $pd(k[S_{\mathcal{B}}]) = max\{i | F_i \neq 0\}$. The *i*-th Betti number of $k[S_{\mathcal{B}}]$ is the rank of the free module F_i , i.e., $\beta_i(k[S_{\mathcal{B}}]) = rank(F_i)$; and the Betti sequence of $k[S_{\mathcal{B}}]$ is $(\beta_i(k[S_{\mathcal{B}}]); 0 \leq i \leq pd(k[S_{\mathcal{B}}]))$. When the Krull dimension of $k[S_{\mathcal{B}}]$ coincides with its depth as k[x]-module, the ring $k[S_{\mathcal{B}}]$ is said to be Cohen-Macaulay. By the Auslander-Buchsbaum formula, this is equivalent to $pd(k[S_{\mathcal{B}}]) = n - dim(k[S_{\mathcal{B}}])$. When $k[S_{\mathcal{B}}]$ is Cohen-Macaulay, its (Cohen-Macaulay) type is the rank of the last nonzero module in the resolution, i.e., $type(k[S_{\mathcal{B}}]) := \beta_p(k[S_{\mathcal{B}}])$ where $p = pd(k[S_{\mathcal{B}}])$.

Now consider $d \in \mathbb{Z}^+$ and $a_0 := 0 < a_1 < \cdots < a_n = d$ a sequence of relatively prime integers. Denote by \mathcal{C} the projective monomial curve $\mathcal{C} \subset \mathbb{P}_k^n$ of degree d parametrically defined by

This work was supported in part by the grant PID2022-137283NB-C22 funded by MCIN/AEI/10.13039/501100011033 and by ERDF "A way of making Europe". The third author thanks financial support from European Social Fund, *Programa Operativo de Castilla y León*, and *Consejería de Educación de la Junta de Castilla y León*.

$$\begin{aligned} x_i &= u^{a_i} v^{d-a_i} \text{ for all } i \in \{0, \dots, n\}, \text{ i.e., } \mathcal{C} \text{ is the Zariski closure of} \\ &\{(u^{a_0} v^{d-a_0} : \dots : u^{a_i} v^{d-a_i} : \dots : u^{a_n} v^{d-a_n}) \in \mathbb{P}_k^n \,|\, (u:v) \in \mathbb{P}_k^1\}. \end{aligned}$$

Taking $\mathcal{A} = \{\mathbf{a}_0, \dots, \mathbf{a}_n\} \subset \mathbb{N}^2$ with $\mathbf{a}_i = (a_i, d - a_i)$ for all $i = 0, \dots, n$, one has that $I_{\mathcal{A}}$ is the vanishing ideal of \mathcal{C} , and the coordinate ring of \mathcal{C} is the two-dimensional ring $k[\mathcal{S}] \simeq k[x_0, \dots, x_n]/I_{\mathcal{A}}$, where $\mathcal{S} = \mathcal{S}_{\mathcal{A}}$ denotes the monoid spanned by \mathcal{A} . The projective monomial curve \mathcal{C} is said to be arithmetically Cohen-Macaulay if the ring $k[\mathcal{S}]$ is Cohen-Macaulay.

The projective curve C has two affine projections, $C_1 = \{(u^{a_1}, \ldots, u^{a_n}) \in \mathbb{A}_k^n | u \in k\}$ and $C_2 = \{(v^{d-a_0}, v^{d-a_1}, \ldots, v^{d-a_{n-1}}) \in \mathbb{A}_k^n | v \in k\}$, associated to the sequences $a_1 < \cdots < a_n$ and $d - a_{n-1} < \cdots < d - a_1 < d - a_0$, respectively. The second sequence is sometimes called the dual of the first one. Denote by $S_1 := S_{\mathcal{A}_1}$ the numerical semigroup generated by $\mathcal{A}_1 = \{a_1, \ldots, a_n\}$. The vanishing ideal of C_1 is $I_{\mathcal{A}_1} \subset k[x_1, \ldots, x_n]$, and hence, its coordinate ring is the one-dimensional ring $k[S_1] \simeq k[x_1, \ldots, x_n]/I_{\mathcal{A}_1}$. Moreover, $I_{\mathcal{A}}$ is the homogenization of $I_{\mathcal{A}_1}$ with respect to the variable x_0 . Similarly, denoting by $S_2 := S_{\mathcal{A}_2}$ the numerical semigroup generated by $\mathcal{A}_2 := \{d - a_0, d - a_1, \ldots, d - a_{n-1}\}$, the vanishing ideal of C_2 is $I_{\mathcal{A}_2} \subset k[x_0, \ldots, x_{n-1}]$, its coordinate ring is $k[S_2] \simeq k[x_0, \ldots, x_{n-1}]/I_{\mathcal{A}_2}$, and $I_{\mathcal{A}}$ is the homogenization of $I_{\mathcal{A}_2}$ with respect to x_n .

One has that $\beta_i(k[S]) \ge \beta_i(k[S_1])$ for all *i*, and the goal of this work is to understand when the Betti sequences of k[S] and $k[S_1]$ coincide. A necessary condition is that k[S] is Cohen-Macaulay. Indeed, affine monomial curves are always arithmetically Cohen-Macaulay while projective ones may be arithmetically Cohen-Macaulay or not. Thus, $pd(k[S]) = pd(k[S_1])$ if and only if C is arithmetically Cohen-Macaulay. In Theorem 1.2, which is the main result of this work, we provide a combinatorial sufficient condition for having equality between the Betti sequences of k[S] and $k[S_1]$ by means of the poset structures induced by S and S_1 on the Apery sets of both S and S_1 . In Propositions 2.1 and 2.2, we use our main result to provide explicit families of curves where $\beta_i(k[S]) = \beta_i(k[S_1])$ for all *i*.

The motivation of this work comes from [4], where the authors obtain a sufficient condition in terms of Gröbner bases to ensure the equality of the Betti sequences.

1. APERY SETS AND BETTI NUMBERS

Let $d \in \mathbb{Z}^+$ and $a_0 := 0 < a_1 < \cdots < a_n = d$ be a sequence of relatively prime integers. For each $i = 0, \ldots, n$, set $\mathbf{a}_i := (a_i, d - a_i) \in \mathbb{N}^2$, and consider the three sets $\mathcal{A}_1 = \{a_1, \ldots, a_n\}$, $\mathcal{A}_2 = \{d, d - a_1, \ldots, d - a_{n-1}\}$ and $\mathcal{A} = \{\mathbf{a}_0, \ldots, \mathbf{a}_n\} \subset \mathbb{N}^2$. We denote by $\mathcal{C} \subset \mathbb{P}_k^n$ the projective monomial curve defined by \mathcal{A} as defined in the introduction, and by \mathcal{C}_1 and \mathcal{C}_2 its affine projections. Consider \mathcal{S}_1 and \mathcal{S}_2 the numerical semigroups generated by \mathcal{A}_1 and \mathcal{A}_2 respectively, and \mathcal{S} the monoid spanned by \mathcal{A} that we call the homogenization of \mathcal{S}_1 (with respect to d).

Definition 1.1. For i = 1, 2, the Apery set of S_i with respect to d is $\operatorname{Ap}_i := \{y \in S_i | y - d \notin S_i\}$. One can also define the Apery set of S as $\operatorname{AP}_S := \{y \in S | y - a_0 \notin S, y - a_n \notin S\}$.

Note that $AP_{\mathcal{S}}$ has at least d elements by [3, Lem. 2.5]. Moreover, $|AP_{\mathcal{S}}| = d$ if and only if C is arithmetically Cohen-Macaulay.

In order to compare $\beta_i(k[S])$ and $\beta_i(k[S_1])$ for all *i*, we will relate in Theorem 1.2 the Apery sets Ap₁ and AP_S with the natural poset structure that both have and that we now define. For i = 1, 2, (Ap_i, \leq_i) is a poset, where \leq_i is given by $y \leq_i z \iff z - y \in S_i$. Similarly, (AP_S, \leq_S) is a poset for \leq_S defined by $\mathbf{y} \leq_S \mathbf{z} \iff \mathbf{z} - \mathbf{y} \in S$.

The main result in this section is Theorem 1.2 where we give a sufficient condition in terms of the poset structures of the Apery sets Ap_1 and AP_S for the Betti sequences of $k[S_1]$ and k[S] to coincide.

Theorem 1.2. If $(AP_{\mathcal{S}}, \leq_{\mathcal{S}}) \simeq (Ap_1, \leq_1)$, then $\beta_i(k[\mathcal{S}]) = \beta_i(k[\mathcal{S}_1])$ for all i.

In fact, the condition $(AP_S, \leq_S) \simeq (Ap_1, \leq_1)$ can be checked in terms of the poset Ap_1 and the minimal generators of S_1 when k[S] is Cohen-Macaulay, as shown in Proposition 1.4. Before stating that result, let us first recall some useful notions about posets.

Definition 1.3. Let (Σ, \leq) be a poset.

- (a) For $y, z \in \Sigma$, we say that z covers y, and denote it by $y \prec z$, if y < z and there is no $w \in \Sigma$ such that y < w < z.
- (b) We say that Σ is graded if there exists a function ρ : Σ → N, called rank function in Σ, such that:
 - If $y, z \in \Sigma$ and y < z, then $\rho(y) < \rho(z)$.
 - If $y, z \in \Sigma$ and $y \prec z$, then $\rho(z) = \rho(y) + 1$.

Proposition 1.4. The following two claims are equivalent:

- (a) The posets (Ap_1, \leq_1) and (AP_S, \leq_S) are isomorphic;
- (b) k[S] is Cohen-Macaulay, (Ap_1, \leq_1) is graded, and $\{a_1, \ldots, a_{n-1}\}$ is contained in the minimal system of generators of S_1 .

2. EXAMPLES OF APPLICATION

In Propositions 2.1 and 2.2, we provide some sequences $a_1 < \cdots < a_n$ for which the condition in Theorem 1.2 is satisfied. Let us start with arithmetic sequences, i.e., sequences $a_1 < \cdots < a_n$ such that $a_i = a_1 + (i - 1)e$ for some positive integer e. For this family, we refine [4, Cor. 4.2] that considers $a_1 > n - 1$.

Proposition 2.1. Let $a_1 < \ldots < a_n$ be an arithmetic sequence of relatively prime integers. Then, $(AP_{\mathcal{S}}, \leq_{\mathcal{S}}) \simeq (Ap_1, \leq_1)$ if and only if $a_1 > n - 2$. Therefore, if $a_1 > n - 2$, the Betti sequences of $k[\mathcal{S}_1]$ and $k[\mathcal{S}]$ coincide.

Example 1. For the sequence 5 < 6 < 7 < 8 < 9 < 10, one has that $a_1 = 5 > 4 = n - 2$. Therefore, the Apery sets (Ap_1, \leq_1) and (AP_S, \leq_S) are isomorphic. Hence, by Theorem 1.2, the Betti sequences of $k[S_1]$ and k[S] coincide. One can check that both are (1, 11, 30, 35, 19, 4). The posets (Ap_1, \leq_1) and (AP_S, \leq_S) in this example are shown in Figure 1.

FIGURE 1. The posets (Ap_1, \leq_1) (in blue) and (AP_S, \leq_S) (in black) for $S_1 = \langle 5, 6, 7, 8, 9, 10 \rangle$.

In [1, Sect. 6], the authors studied the canonical projections of the projective monomial curve C defined by an arithmetic sequence $a_1 < \cdots < a_n$ of relatively prime integers, i.e., the curve $\pi_r(C)$

obtained as the Zariski closure of the image of C under the *r*-th canonical projection $\pi_r : \mathbb{P}_k^n \dashrightarrow \mathbb{P}_k^{n-1}$, $(p_0 : \cdots : p_n) \mapsto (p_0 : \cdots : p_{r-1} : p_{r+1} : \cdots : p_n)$. We know that $\pi_r(C)$ is the projective monomial curve associated to the sequence $a_1 < \cdots < a_{r-1} < a_{r+1} < \cdots < a_n$.

In Proposition 2.2, for any $r \in \{2, ..., n-1\}$, we consider $\mathcal{A}_1 = \{a_1, ..., a_n\} \setminus \{a_r\}$, the numerical semigroup $\mathcal{S}_1 = \mathcal{S}_{\mathcal{A}_1}$, and its homogenization \mathcal{S} , and we characterize when the posets (Ap_1, \leq_1) and $(AP_{\mathcal{S}}, \leq_{\mathcal{S}})$ are isomorphic.

Proposition 2.2. Let $a_1 < ... < a_n$ be an arithmetic sequence of relatively prime integers with $n \ge 4$, and $r \in \{2,...,n-1\}$. Consider $\mathcal{A}_1 = \{a_1,...,a_n\} \setminus \{a_r\}$, the numerical semigroup \mathcal{S}_1 generated by \mathcal{A}_1 , and its homogenization \mathcal{S} . Then the posets (Ap_1, \le_1) and $(AP_{\mathcal{S}}, \le_{\mathcal{S}})$ are isomorphic if and only if one of the following conditions holds:

(a) $r = 2, a_1 \ge n - 1$ and $a_1 \ne n$;

- (b) $3 \le r \le n-2$, $a_1 \ge n$ and $r \le a_1 n + 1$;
- (c) r = n 1 and $a_1 \ge n 2$.

Consequently, if one of the previous conditions holds, then $\beta_i(k[S_1]) = \beta_i(k[S])$, for all *i*.

Example 2. For the sequence 9 < 10 < 11 < 12 < 13, the Betti sequences of $k[S_1]$ and k[S] coincide by Proposition 2.1. Indeed, it is (1, 10, 20, 15, 4) for both curves. The parameters of this arithmetic sequence are $a_1 = 9$, e = 1 and n = 5. Hence, for r = 2, 3, 4, if $A_1 = \{9, 10, 11, 12, 13\} \setminus \{a_r\}$, the Betti sequences of $k[S_1]$ and k[S] coincide by Proposition 2.2. One can check that the Betti sequence is (1, 5, 6, 2) when r = 2 or r = 4, and it is (1, 8, 12, 5) when r = 3.

REFERENCES

- I. Bermejo, E. García-Llorente, I. García-Marco, and M. Morales. Noether resolutions in dimension 2. J. Algebra 482 (2017), 398-426.
- [2] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 4-3-0 A computer algebra system for polynomial computations. http://www.singular.uni-kl.de, 2022.
- [3] P. Gimenez and M. González Sánchez. Castelnuovo-Mumford regularity of projective monomial curves via sumsets, *Mediterr. J. Math.* 20, 287 (2023), 24 pp.
- [4] J. Saha, I. Sengupta, and P. Srivastava. Betti sequence of the projective closure of affine monomial curves. J. Symb. Comput. 119 (2023), 101-111.

INSTITUTO DE MATEMÁTICAS Y APLICACIONES (IMAULL), SECCIÓN DE MATEMÁTICAS, FACULTAD DE CIEN-CIAS, UNIVERSIDAD DE LA LAGUNA, 38200, LA LAGUNA, SPAIN

Email address: iggarcia@ull.edu.es

Instituto de Investigación en Matemáticas de la Universidad de Valladolid (IMUVA), Universidad de Valladolid, 47011 Valladolid, Spain

Email address: pgimenez@uva.es

Instituto de Investigación en Matemáticas de la Universidad de Valladolid (IMUVA), Universidad de Valladolid, 47011 Valladolid, Spain

Email address: mario.gonzalez.sanchez@uva.es