PROJECTIVE CLOSURE OF SEMIGROUP ALGEBRAS

JOYDIP SAHA, INDRANATH SENGUPTA, AND PRANJAL SRIVASTAVA

ABSTRACT. This paper investigates the projective closure of simplicial affine semigroups in \mathbb{N}^d , $d \ge 2$. We present a characterization of the Cohen-Macaulay property for the projective closure of these semigroups using Gröbner bases. Additionally, we establish a criterion, based on Gröbner bases, for determining the Buchsbaum property of non-Cohen-Macaulay projective closures of numerical semigroup rings. Lastly, we introduce the concept of k-lifting for simplicial affine semigroups in \mathbb{N}^d , and investigate its relationship with the original simplicial affine semigroup.

1. INTRODUCTION

Let Γ be an affine semigroup, fully embedded in \mathbb{N}^d . Let Γ be minimally generated by the set $\{\mathbf{m}_1, \ldots, \mathbf{m}_{d+r}\}$. The semigroup algebra $\mathbb{K}[\Gamma]$ over a field \mathbb{K} is generated by the monomials $\mathbf{x}^{\mathbf{m}}$, where $\mathbf{m} \in \Gamma$, with maximal ideal $\mathbf{m} = (\mathbf{x}^{\mathbf{m}_1}, \ldots, \mathbf{x}^{\mathbf{m}_{d+r}})$. Let $I(\Gamma)$ denote the defining ideal of $\mathbb{K}[\Gamma]$, which is the kernel of the \mathbb{K} =algebra homomorphism $\phi : A = \mathbb{K}[z_1, \ldots, z_{d+r}] \to \mathbb{K}[\mathbf{s}]$, such that $\phi(z_i) = \mathbf{s}^{\mathbf{m}_i}$, $i = 1, \ldots, d+r$ and $\mathbf{s} = s_1 \ldots s_d$. Let us write $\mathbb{K}[\Gamma] \cong A/I(\Gamma)$. The defining ideal $I(\Gamma)$ is a binomial prime ideal.

Consider a partial relation order on \mathbb{N}^d : $\mathbf{a} = (a_1, \ldots, a_d) \leq \mathbf{b} = (b_1, \ldots, b_d)$ if and only if $a_i \leq b_i, \forall i$. For indeterminate $\mathbf{s} = s_1 \ldots s_d, \mathbf{t} = t_1 \ldots t_d$, consider a map $\phi^h : \mathbb{K}[z_0, z_1, \ldots, z_{d+r}] \to \mathbb{K}[\mathbf{s}, \mathbf{t}]$ defined by $\phi^h(z_i) = \mathbf{s}^{\mathbf{m}_{d+r} - \mathbf{m}_i} \mathbf{t}^{m_i}$ for $1 \leq i \leq d + r$ and $\phi^h(z_0) = \mathbf{s}^{\mathbf{m}_{d+r}}$. The image of the map ϕ^h is the subalgebra $\mathbb{K}[\mathcal{A}]$ of $\mathbb{K}[\mathbf{s}, \mathbf{t}]$ generated by the monomials whose exponents are the generators of the affine semigroup

 $\Gamma^{h} = \langle \{ (\mathbf{m}_{d+r}, \mathbf{0}), (\mathbf{m}_{d+r} - \mathbf{m}_{1}, \mathbf{m}_{1}), \dots, (\mathbf{m}_{d+r} - \mathbf{m}_{d+r-1}, \mathbf{m}_{d+r-1}), (\mathbf{0}, \mathbf{m}_{d+r}) \} \rangle.$

We call the subalgebra $\mathbb{K}[\Gamma^h]$ the projective closure of the affine semigroup Γ . Its vanishing ideal $I(\Gamma^h)$ is given by the kernel of the homomorphism ϕ^h .

The projective closure of the affine semigroup Γ is Cohen-Macaulay if its vanishing ideal $I(\Gamma^h)$ is a Cohen-Macaulay ideal if and only if $\mathbf{s}^{\mathbf{m}_{d+r}-\mathbf{m}_1}\mathbf{t}^{\mathbf{m}_1}, \ldots, \mathbf{s}^{\mathbf{m}_{d+r}-\mathbf{m}_d}\mathbf{t}^{\mathbf{m}_d}, \mathbf{s}^{\mathbf{m}_{d+r}}$ is a regular sequence in $\mathbb{K}[\mathcal{A}]$ (see [6, Theorem 2.6]).

Affine semigroups provide a natural extension of numerical semigroups and play a crucial role in defining the projective closure of numerical semigroup rings. Gröbner basis theory has proven to be a valuable technique for studying properties related to numerical semigroups and their projective closures, including the Cohen-Macaulayness of their

¹⁹⁹¹ Mathematics Subject Classification. Primary 13H10, 13P10, 20M25.

Key words and phrases. Affine Semigroups, Gröbner bases, Associated graded rings, Betti numbers, Cohen-Macaulay.

The first author thanks NBHM, Government of India for the postdoctoral fellowship at ISI Kolkata. The second author is the corresponding author and thanks SERB for the grant CRG/2022/007047. The third author thanks IISER Bhopal for the post-doc fellowship.

associated graded rings and the algorithm for finding the Frobenius number of numerical semigroups [1, 10]. Subsequently, Herzog and Stamate [7] established Gröbner basis criteria for determining the Cohen-Macaulay property of projective closures of affine monomial curves.

In this paper, we investigate the projective closure of simplicial affine semigroups in \mathbb{N}^d , where $d \ge 2$. We provide a criterion for characterizing the Cohen-Macaulayness of the projective closure of simplicial affine semigroups using the Gröbner basis of the defining ideal $I(\Gamma^h)$.

Furthermore, we explore the Buchsbaum property of the corresponding projective closures in cases where the projective closure of the numerical semigroup ring is non-Cohen-Macaulay. Kamoi [9] examined the Buchsbaum property of simplicial affine semigroups by utilizing the Gröbner basis of the corresponding defining ideal. In Section 3.2, we present a characterization of the Buchsbaum property for non-Cohen-Macaulay projective closures using the Gröbner basis of the corresponding defining ideal.

In Section 5, we study the lifting of simplicial affine semigroups in \mathbb{N}^d . This construction is motivated by Şahin's work [14] on k-lifting of monomial curves for a given $k \in \mathbb{N}$. It is inspired by the shifting of simplicial affine semigroups. For d = 1, Herzog and Stamate investigated the Cohen-Macaulayness of the associated graded ring of numerical semigroup rings. Similarly, Şahin demonstrated that if the associated graded ring of the original numerical semigroup ring is Cohen-Macaulay, then the associated graded ring of its k-lifting is also Cohen-Macaulay. We establish that the same result holds for the lifting of simplicial affine semigroups when $d \ge 2$. If Γ is a simplicial affine semigroup and Γ_k represents the corresponding k-lifting of Γ , the Betti numbers of both the rings are identical, written as $\beta_i(\mathbb{K}[\Gamma]) = \beta_i(\mathbb{K}[\Gamma_k])$, where $\beta_i(\mathbb{K}[\Gamma])$ and $\beta_i(\mathbb{K}[\Gamma_k])$ denote the i^{th} Betti numbers of $\mathbb{K}[\Gamma]$ and $\mathbb{K}[\Gamma_k]$ respectively.

2. PRELIMINARIES

For an affine semigroup Γ , consider the natural partial ordering \prec_{Γ} on \mathbb{N} , such that for all elements $x, y \in \mathbb{N}^r$, $x \prec_{\Gamma} y$ if $y - x \in \Gamma$.

Definition 2.1 ([8]). Let $\mathbf{b} \in \max_{\prec_{\Gamma}} \operatorname{Ap}(\Gamma, E)$; the element $\mathbf{b} - \sum_{i=1}^{r} \mathbf{a}_{i}$ is called a *quasi-Frobenius* element of Γ . The set of all quasi-Frobenius elements of Γ is denoted by $\operatorname{QF}(\Gamma)$ and its cardinality is said to be the *type* of Γ , denoted by $\operatorname{type}(\Gamma)$.

Remark 2.2 ([8, Proposition 3.3]). If $\mathbb{K}[\Gamma]$ is arithmetically Cohen-Macaulay, then the last Betti number of $\mathbb{K}[\Gamma]$ is called the Cohen-Macaulay type of $\mathbb{K}[\Gamma]$, written as $\mathrm{CMtype}(\mathbb{K}[\Gamma])$. Moreover, $\mathrm{type}(\Gamma) = \mathrm{CMtype}(\mathbb{K}[\Gamma])$.

Theorem 2.3. The defining ideal $I(\Gamma^h)$ of $\mathbb{K}[\Gamma^h]$ is given by the homogenization of f with respect to variable z_0 , where $f \in I(\Gamma)$, i.e., $I(\Gamma^h) = \{f^h : f \in I(\Gamma)\}$.

3. COHEN-MACAULAYNESS OF PROJECTIVE CLOSURE OF SIMPLICIAL AFFINE SEMIGROUPS

In this section, we study the Cohen-Macaulay characterization of the projective closure of simplicial affine semigroups in \mathbb{N}^d via Gröbner basis of defining ideal of corresponding semigroups.

Theorem 3.1. Let $E_{\Gamma} = {\mathbf{m_1}, \dots, \mathbf{m_d}}$ be a set of extremal rays of Γ . Then the set

$$E_{\Gamma^h} = \{ (\mathbf{m}_{d+r} - \mathbf{m}_i, \mathbf{m}_i), (\mathbf{m}_{d+r}, \mathbf{0}) | 1 \le i \le d \}$$

is set of extremal rays of Γ^h .

Let \prec denotes the degree reverse lexicographic ordering on $A = \mathbb{K}[z_1, \ldots, z_{d+r}]$ induced by $z_1 \prec \cdots \prec z_{d+r}$ and \prec_0 the induced reverse lexicographic order on $A[z_0]$, where $z_0 \prec z_1$. The following theorem is one of the main results of this paper. For any monomial ideal I, we let G(I) denote the unique minimal set of monomial generators for I.

Theorem 3.2. Let Γ be a simplicial affine semigroup in \mathbb{N}^d , $d \ge 2$ with set of extremal rays $E = \{\mathbf{m}_1, \dots, \mathbf{m}_d\}$. Then, the followings are equivalent.

- (a) $\mathbb{K}[\Gamma]$ is arithmetically Cohen-Macaulay.
- (b) $\mathbb{K}[\Gamma^h]$ is arithmetically Cohen-Macaulay.
- (c) z_0, z_1, \ldots, z_d do not divide any element of $G(in_{\prec_0}(I(\Gamma^h)))$.
- (d) z_1, \ldots, z_d do not divide any element of $G(in_{\prec}(I(\Gamma)))$.

Theorem 3.3. Let $\mathbb{K}[\Gamma^h]$ is arithmetically Cohen-Macaulay. The Apéry set of Γ^h with respect to E_{Γ^h} is given by $\operatorname{Ap}(\Gamma^h, E_{\Gamma^h}) =$

$$\left\{\sum_{i=d+1}^{d+r} \alpha_i(\mathbf{m}_{d+r} - \mathbf{m}_i, \mathbf{m}_i) : \sum_{i=d+1}^{d+r} \alpha_i \mathbf{m}_i \in \operatorname{Ap}(\Gamma, E_{\Gamma}) \text{ for some } (\alpha_{d+1}, \dots, \alpha_{d+r}) \in \mathbb{N}^r \right\}$$

For an affine semigroup Γ , consider the partial natural ordering \preceq_{Γ} on \mathbb{N}^d where, for all elements $\mathbf{x} \preceq_{\Gamma} \mathbf{y}$ if $\mathbf{y} - \mathbf{x} \in \Gamma$.

Theorem 3.4. Let $\mathbb{K}[\Gamma^h]$ be Cohen-Macaulay. Then, the Cohen-Macaulay type of $\mathbb{K}[\Gamma^h]$ is $r(\mathbb{K}[\Gamma^h]) = |\{\max_{\preceq_{\Gamma^h}}(\operatorname{Ap}(\Gamma^h, E_{\Gamma^h}))\}|.$

4. BUCHSBAUM CRITERION FOR NON-COHEN MACAULAY PROJECTIVE CLOSURE OF NUMERICAL SEMIGROUP RINGS

Theorem 4.1. $\mathbb{K}[\Gamma^h]$ is Buchsbaum if and only if x_0, x_{s+1} do not divide the leading monomial of any element of G.

Example 4.2. Let $R = \mathbb{K}[u^4, u^3v, uv^3, v^4]$. Here $T = \langle (0, 4), (3, 1), (1, 3), (0, 4) \rangle$ and T^* is minimally generated by the set $\langle (0, 4), (1, 3), (2, 2), (3, 1), (4, 0) \rangle$ with extremal rays $\{(0, 4), (4, 0)\}$. Note that $G = \{x_3^2 - x_4x_0, x_2x_3 - x_1x_0, x_1x_3 - x_2x_4, x_2^2 - x_3x_0, x_1x_2 - x_4x_0, x_1^2 - x_3x_4\}$ is the reduced Gröbner basis of I_{T_*} with respect to degree reverse lexicographic ordering > induced by $x_1 > x_2 > x_3 > x_4 > x_0$. We can see that x_0, x_4 do not divide the leading monomial of any element of G, hence R is Buchsbaum ring.

5. LIFTING OF AFFINE SEMIGROUPS

Let Γ be a simplicial affine semigroup minimally generated by $\{\mathbf{a}_1, \ldots, \mathbf{a}_{d+r}\}$ with the set of extremal rays $\{a_1, \ldots, a_d\}$. The k lifting of Γ is defined as the affine semigroup Γ_k minimally generated by $\{\mathbf{a}_1, \ldots, \mathbf{a}_d, k\mathbf{a}_{d+1}, \ldots, k\mathbf{a}_{d+r}\}$. Note that Γ_k is simplicial affine semigroup. Let $x_E^{\alpha} = x_1^{\alpha_1} \ldots x_d^{\alpha_d}, x_{E_c}^{\alpha'} = x_{d+1}^{\alpha_{d+1}} \ldots x_{d+r}^{\alpha_{d+r}}$ where $\alpha = (\alpha_1, \ldots, \alpha_d)$, $\alpha' = (\alpha_{d+1}, \ldots, \alpha_{d+r})$,

Theorem 5.1. Let $x_E^{\alpha} x_{E_c}^{\alpha'} - x_E^{\beta} x_{E_c}^{\beta'} \in I_{\Gamma}$ then $x_E^{k\alpha} x_{E_c}^{\alpha'} - x_E^{k\beta} x_{E_c}^{\beta'} \in I_{\Gamma_k}$. Moreover, $\mu(I_{\Gamma}) = \mu(I_{\Gamma_k})$.

Corollary 5.2. If $\mathbb{K}[\Gamma]$ is Cohen-Macaulay (respectively Gorenstein) then $\mathbb{K}[\Gamma_k]$ is Cohen-Macaulay (respectively Gorenstein).

Theorem 5.3. If $\mathbb{K}[\Gamma]$ is Cohen-Macaulay. Then $\operatorname{Ap}(\Gamma_k, E) = \{k\mathbf{b} : \mathbf{b} \in \operatorname{Ap}(\Gamma_k, E)\}$.

Definition 5.4. A semigroup Γ is said to be *of homogeneous type* if $\beta_i(\mathbb{K}[\Gamma]) = \beta_i(\operatorname{gr}_{\mathfrak{m}}(\mathbb{K}[\Gamma]))$ for all $i \geq 1$.

Theorem 5.5. Let $\operatorname{gr}_{\mathfrak{m}}(\mathbb{K}[\Gamma])$ is Cohen-Macaulay and Γ is of homogeneous type. Then Γ_k is of homogeneous type.

REFERENCES

- [1] Arslan, F. Cohen-Macaulayness of tangent cones. Proc. Amer. Math. Soc.128(2000), no.8, 22432251.
- [2] Bruns, W., Herzog, H. J. (1998). Cohen-macaulay rings (No. 39). Cambridge university press.
- [3] Cimpoeaş, M.; Dumitru I. Stamate. Gröbnernice pairs of ideals. In Combinatorial Structures in Algebra and Geometry: NSA 26, Constana, Romania, August 26September 1, 2018 26, pp. 15-29. Springer International Publishing, 2020.
- [4] Eisenbud, D. (2013). Commutative algebra: with a view toward algebraic geometry (Vol. 150). Springer Science & Business Media.
- [5] García-Sánchez, P. A.; Rosales, J. C. On Buchsbaum simplicial affine semigroups. Pacific J. Math.202(2002), no.2, 329339.
- [6] Goto, Shiro; Suzuki, Naoyoshi; Watanabe, Keiichi On affine semigroup rings.Japan. J. Math. 2(1976), no.1, 112.
- [7] Herzog, Jürgen; Stamate, Dumitru I. Cohen-Macaulay criteria for projective monomial curves via Grbner bases. Acta Math. Vietnam.44(2019), no.1, 5164.
- [8] Jafari, Raheleh; Yaghmaei, Marjan. Type and conductor of simplicial affine semigroups. J. Pure Appl. Algebra226(2022), no.3, Paper No. 106844, 19 pp.
- [9] Kamoi, Yuuji. Defining ideals of Buchsbaum semigroup rings. Nagoya Math. J.136(1994), 115131.
- [10] Morales, Marcel; Dung, Nguyen Thi. A "pseudo-polynomial" algorithm for the Frobenius number and Gröbner basis. J. Symbolic Comput.120(2024), Paper No. 102233, 28 pp
- [11] Ojeda, I.; Vigneron-Tenorio, A. The short resolution of a semigroup algebra. Bull. Aust. Math. Soc.96(2017), no.3, 400411.
- [12] Rosales, J. C.; Garca-Snchez, Pedro A. On Cohen-Macaulay and Gorenstein simplicial affine semigroups. Proc. Edinburgh Math. Soc. (2)41(1998), no.3, 517537.
- [13] Saha, Joydip; Sengupta, Indranath; Srivastava, Pranjal. On the associated graded ring of semigroup algebras. Comm. Algebra51(2023), no.10, 42594270.
- [14] Şahin, Mesut. Liftings of a monomial curve. Bulletin of the Australian Mathematical Society. 98.2 (2018): 230-238.

GITAM, Bengaluru Campus, Karnataka, 561203, INDIA. *E-mail address*: saha.joydip56@gmail.com

Discipline of Mathematics, IIT Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, INDIA. *E-mail address*: indranathsg@iitgn.ac.in

Discipline of Mathematics, IISER Bhopal, INDIA. *E-mail address*: pranjal.srivastava@iitgn.ac.in