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Abstract

Motivated by the change-making problem, we extend the notion of greediness
to sets of generators of numerical semigroups, and we provide an algorithm
to decide that property.

1. The change-making problem and greedy sets

In the change-making problem we are given a set of integer coin denom-
inations S = {s1, s2, . . . , st}, with 0 < s1 < . . . < st, and a target amount
k ∈ N0, where N0 is the set of nonnegative integers. The goal is to represent
k using as few coins as possible. Traditionally, an additional requirement is
imposed, namely that s1 = 1. In this work we explore the consequences of
dropping that requirement, so that the ideas of the change-making problem
can be generalized to numerical semigroups.

More formally, we are looking for a payment vector (a1, . . . , at), such that:
1. ai ∈ N0 for all i = 1, . . . , t, 2.

∑t
i=1 aisi = k, and 3.

∑t
i=1 ai is minimal.

The payment vector a = (a1, a2, . . . , at) that satis�es Conditions 1, 2 and
3 above is called a minimal payment vector, or minimal representation of
k with respect to S, and we denote it by MinRepS(k). If a is a minimal
representation of k, then MinCostS(k) =

∑t
i=1 ai. Note that MinRepS(k)

is not necessarily unique, but MinCostS(k) is.
A traditional approach for addressing the change-making problem is the

greedy strategy, which proceeds by �rst choosing the coin of the largest pos-
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sible denomination, subtracting it from the target amount as many times as
possible, then doing the same with the second-largest coin, and so on.

If the set of coin denominations S = {s1, s2, . . . , st} is such that 1 < s1 <
. . . < st, then not all integers are representable, regardless of the strategy
that we choose for �nding the representation. Given a representable k, we
call it greedy-representable if there exists a payment vector a = (a1, a2, . . . , at)
that is obtained by the greedy strategy mentioned above.

De�nition 1. Given a set of denominations S = {s1, s2, . . . , st} and a given
target amount k, the greedy payment vector, or greedy representation of k
with respect to S, is the payment vector a = GreedyRepS(k) = (a1, a2, . . . , at)
produced by the greedy strategy (if it exists), and GreedyCostS(k) =

∑t
i=1 ai.

If k is greedy-representable, the greedy representation is not necessarily
the best or the most e�cient representation of k. In other words, given the

greedy representation vector a = (a1, a2, . . . , at), the sum
t∑

i=1

ai is not neces-

sarily minimal. However, for some speci�c sets S the greedy representation is
indeed minimal for any greedy-representable k. Such a set S is called greedy,
orderly or canonical [2]. Greedy sets were used in [2] to construct circulant
network topologies with e�cient routing algorithms.

2. Quasi-greedy sets and quasi-greedy numerical semigroups

If gcd(s1, s2, . . . , st) = 1 then S generates a numerical semigroup S, and
all integers k > f(S) are representable, where f(S) denotes the Frobenius
number of S. The denominations s1, s2, . . . , st are the generators of S, and
we write S = ⟨S⟩. We also denote by G the set of gaps of S. For the basic
concepts and results about numerical semigroups see [3].

Even if k is representable, we cannot still guarantee that k be greedy-
representable. This leads us to consider a modi�cation of the greedy strat-
egy for representing numbers, which we call quasi-greedy. The quasi-greedy
algorithm behaves as the greedy algorithm whenever possible. It is described
in Algorithm 1.
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Algorithm 1: QUASI-GREEDY REPRESENTATION METHOD

Input : The set of denominations S = {s1, s2, . . . , st}, with
1 < s1 < s2 < . . . < st, gcd(s1, s2, . . . , st) = 1, and an
element k ∈ ⟨S⟩, k > 0.

Output: Quasi-greedy representation vector a = (a1, a2, . . . , at).

1 for i:= t downto 1 do
2 Let q be the largest integer such that k = qsi + r and r ∈ ⟨S⟩ ;
3 ai := q;
4 k := r;
5 if k = 0 then
6 return a;
7 end

8 end

De�nition 2. For a given set of denominations S = {s1, s2, . . . , st}, with
1 < s2 < . . . < st and gcd(s1, s2, . . . , st) = 1, and a given k ∈ ⟨S⟩, k > 0, the
quasi-greedy representation of k with respect to S, denoted QGreedyRepS(k),
is the payment vector a = (a1, a2, . . . , at) produced by Algorithm 1, and
QGreedyCostS(k) =

∑t
i=1 ai.

All representable numbers k ∈ ⟨S⟩, k > 0, have a quasi-greedy rep-
resentation. Moreover, if k is greedy-representable, then the quasi-greedy
representation is just the greedy representation.

Again, the quasi-greedy representation is not necessarily the best or the
most e�cient representation of k, i.e. given the quasi-greedy representa-

tion vector a = (a1, a2, . . . , at), the sum
t∑

i=1

ai is not necessarily minimal.

However, for some speci�c sets S the quasi-greedy representation is indeed
minimal for any representable k, which leads us to the following de�nition:

De�nition 3. Let S = {s1, s2, . . . , st} be a set of generators with 1 < s1 <
s2 < . . . < st and gcd(s1, s2, . . . , st) = 1, such that Algorithm 1 always
produces an optimal representation for any given k ∈ ⟨S⟩. Then S will be
called quasi-greedy, and the semigroup S = ⟨S⟩ will also be called quasi-
greedy.

Sets of cardinality two are quasi-greedy, but that is not necessarily the
case for sets of cardinality three or greater.
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3. Algorithmic identi�cation of quasi-greedy sets

If S is not quasi-greedy, then there must exist some k s.t. MinCostS(k) <
QGreedyCostS(k). Such a k is called a counterexample. The smallest
counterexample must lie in some �nite interval, the critical range. This is
the basis for the algorithmic identi�cation of quasi-greedy sets. Our main
result is a generalization of Theorem 2.2 of [1] to numerical semigroups:

Theorem 1. Let S = {s1, s2, . . . , st}, with 1 < s1 < s2 < · · · < st and
gcd(s1, . . . , st) = 1, so that S = ⟨S⟩ is a numerical semigroup generated
by S. If there exists a counterexample k ∈ S such that MinCostS(k) <
QGreedyCostS(k), then the smallest such k lies in the range

s3 + s1 + 2 ≤ k ≤ f(S) + st + st−1. (1)

Theorem 1 is the starting point for the algorithmic identi�cation of quasi-
greedy sets and quasi-greedy numerical semigroups. The algorithm must
simply look for a counterexample in the critical range, and if we cannot �nd
one, then we can conclude that S is quasi-greedy, as well as S = ⟨S⟩.

With the aid of Theorem 1 and the ensuing algorithm we have been able
to �nd several quasi-greedy semigroups of embedding dimension three.
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